铝的形态鉴定揭示了硅铝磷酸盐沸石中水的相互作用

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Caiyi Lou, Wenna Zhang, Pan Gao, Yida Zhou, Yuchun Zhi, Fangxiu Ye, Wenfu Yan, Shutao Xu, Yingxu Wei, Zhongmin Liu
{"title":"铝的形态鉴定揭示了硅铝磷酸盐沸石中水的相互作用","authors":"Caiyi Lou, Wenna Zhang, Pan Gao, Yida Zhou, Yuchun Zhi, Fangxiu Ye, Wenfu Yan, Shutao Xu, Yingxu Wei, Zhongmin Liu","doi":"10.1073/pnas.2507802122","DOIUrl":null,"url":null,"abstract":"Water plays a crucial role in material development. As it is ubiquitous throughout zeolite generation and application, host–guest interaction between zeolite and water attracts broad interest, but mechanistic understanding remains fragmented. Here, advanced solid-state NMR techniques (2D <jats:sup>17</jats:sup> O SPAM-MQ, <jats:sup>27</jats:sup> Al{ <jats:sup>31</jats:sup> P} <jats:italic toggle=\"yes\">J</jats:italic> -HMQC, <jats:sup>27</jats:sup> Al{ <jats:sup>29</jats:sup> Si} REDOR, and <jats:sup>1</jats:sup> H TQ-SQ NMR) combined with isotopic tracing and theoretical calculations determine water-induced octahedrally coordinated aluminum in silicoaluminophosphate molecular sieves (SAPOs) as an exclusive product of Al(OP) <jats:sub>4</jats:sub> units coordinated with two water molecules—a structure distinct from that in aluminosilicates. Based on the knowledge of aluminum speciation, we elucidate four water interaction mechanisms in SAPOs, including Brønsted-acid interaction, coordination, reversible/irreversible hydrolysis, and capillary condensation. Contrary to conventional wisdom attributing SAPO degradation to Al-O-P hydrolysis, we clarify that desilication dominates structural collapse, establishing Si environments as catalyst durability descriptors. These mechanistic insights decipher the nature of SAPO interacting with water and its fundamental differences from aluminosilicate zeolite.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"29 16 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum speciation identification reveals water interactions in silicoaluminophosphate zeolites\",\"authors\":\"Caiyi Lou, Wenna Zhang, Pan Gao, Yida Zhou, Yuchun Zhi, Fangxiu Ye, Wenfu Yan, Shutao Xu, Yingxu Wei, Zhongmin Liu\",\"doi\":\"10.1073/pnas.2507802122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water plays a crucial role in material development. As it is ubiquitous throughout zeolite generation and application, host–guest interaction between zeolite and water attracts broad interest, but mechanistic understanding remains fragmented. Here, advanced solid-state NMR techniques (2D <jats:sup>17</jats:sup> O SPAM-MQ, <jats:sup>27</jats:sup> Al{ <jats:sup>31</jats:sup> P} <jats:italic toggle=\\\"yes\\\">J</jats:italic> -HMQC, <jats:sup>27</jats:sup> Al{ <jats:sup>29</jats:sup> Si} REDOR, and <jats:sup>1</jats:sup> H TQ-SQ NMR) combined with isotopic tracing and theoretical calculations determine water-induced octahedrally coordinated aluminum in silicoaluminophosphate molecular sieves (SAPOs) as an exclusive product of Al(OP) <jats:sub>4</jats:sub> units coordinated with two water molecules—a structure distinct from that in aluminosilicates. Based on the knowledge of aluminum speciation, we elucidate four water interaction mechanisms in SAPOs, including Brønsted-acid interaction, coordination, reversible/irreversible hydrolysis, and capillary condensation. Contrary to conventional wisdom attributing SAPO degradation to Al-O-P hydrolysis, we clarify that desilication dominates structural collapse, establishing Si environments as catalyst durability descriptors. These mechanistic insights decipher the nature of SAPO interacting with water and its fundamental differences from aluminosilicate zeolite.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"29 16 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2507802122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2507802122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水在物质发展中起着至关重要的作用。沸石和水之间的主客体相互作用在沸石的生成和应用中无处不在,引起了广泛的兴趣,但对其机理的理解仍然不完整。在这里,先进的固态核磁共振技术(2D 17 O SPAM-MQ、27 Al{31 P} J -HMQC、27 Al{29 Si} REDOR和1 H TQ-SQ核磁共振)结合同位素示踪和理论计算,确定了水诱导磷酸硅铝分子筛(SAPOs)中的八面体配位铝是Al(OP) 4单元与两个水分子配位的独家产物,这种结构与硅铝酸盐中的结构截然不同。基于对铝形态的认识,我们阐明了四种水在SAPOs中的相互作用机制,包括br ønsted-酸相互作用、配位、可逆/不可逆水解和毛细缩合。与将SAPO降解归因于Al-O-P水解的传统观点相反,我们澄清了脱硅在结构崩溃中起主导作用,建立了硅环境作为催化剂耐久性描述因子。这些机制的见解破译了SAPO与水相互作用的性质及其与铝硅酸盐沸石的根本区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aluminum speciation identification reveals water interactions in silicoaluminophosphate zeolites
Water plays a crucial role in material development. As it is ubiquitous throughout zeolite generation and application, host–guest interaction between zeolite and water attracts broad interest, but mechanistic understanding remains fragmented. Here, advanced solid-state NMR techniques (2D 17 O SPAM-MQ, 27 Al{ 31 P} J -HMQC, 27 Al{ 29 Si} REDOR, and 1 H TQ-SQ NMR) combined with isotopic tracing and theoretical calculations determine water-induced octahedrally coordinated aluminum in silicoaluminophosphate molecular sieves (SAPOs) as an exclusive product of Al(OP) 4 units coordinated with two water molecules—a structure distinct from that in aluminosilicates. Based on the knowledge of aluminum speciation, we elucidate four water interaction mechanisms in SAPOs, including Brønsted-acid interaction, coordination, reversible/irreversible hydrolysis, and capillary condensation. Contrary to conventional wisdom attributing SAPO degradation to Al-O-P hydrolysis, we clarify that desilication dominates structural collapse, establishing Si environments as catalyst durability descriptors. These mechanistic insights decipher the nature of SAPO interacting with water and its fundamental differences from aluminosilicate zeolite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信