微孔网电极的可拉伸性和稳定性通过裂缝引导缺口设计

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-10-02 DOI:10.1039/d5nr02993g
Wentao Qian, Le Weng, Junzhuan Wang, Linwei Yu
{"title":"微孔网电极的可拉伸性和稳定性通过裂缝引导缺口设计","authors":"Wentao Qian, Le Weng, Junzhuan Wang, Linwei Yu","doi":"10.1039/d5nr02993g","DOIUrl":null,"url":null,"abstract":"The rapid development of flexible devices demands higher stretchability and stability in conductive metal electrodes, which are indispensable components in a wide range of flexible technologies. In this work, we propose and demonstrate a novel hole mesh structure featuring a directional crack-guiding notch (CGN) design, which can help to disperse stretching stress/strain, while effectively confining cracks to pre-notched locations, minimizing harm to the structural continuity and electrical conductivity of the electrode film. As a proof of concept, hole mesh thin films (Pt/Au) with the CGN design were fabricated and transferred directly onto the elastic polymer substrate (polydimethylsiloxane, PDMS) and tested under repetitive stretching. It is found that the hole mesh electrodes, with CGN design, demonstrate significantly enhanced stretchability and excellent stability of conductivity, withstanding up to 20% strain for 170 cycles—a remarkable improvement compared to the reference samples without notches, which typically fail at lower strains. Further finite element simulations further reveal that the crack-guiding notches effectively suppress uncontrolled crack propagation through the whole mesh electrode, releasing accumulated strain only at the predefined notched locations in a well-controlled manner, and thus maintaining the overall conductivity of the hole mesh electrodes. This very convenient but effective CGN design holds great promise for broad applications in stretchable electronics, sensors, and displays.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"204 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced stretchability and stability of micro hole mesh electrodes via a crack-guiding notch design\",\"authors\":\"Wentao Qian, Le Weng, Junzhuan Wang, Linwei Yu\",\"doi\":\"10.1039/d5nr02993g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of flexible devices demands higher stretchability and stability in conductive metal electrodes, which are indispensable components in a wide range of flexible technologies. In this work, we propose and demonstrate a novel hole mesh structure featuring a directional crack-guiding notch (CGN) design, which can help to disperse stretching stress/strain, while effectively confining cracks to pre-notched locations, minimizing harm to the structural continuity and electrical conductivity of the electrode film. As a proof of concept, hole mesh thin films (Pt/Au) with the CGN design were fabricated and transferred directly onto the elastic polymer substrate (polydimethylsiloxane, PDMS) and tested under repetitive stretching. It is found that the hole mesh electrodes, with CGN design, demonstrate significantly enhanced stretchability and excellent stability of conductivity, withstanding up to 20% strain for 170 cycles—a remarkable improvement compared to the reference samples without notches, which typically fail at lower strains. Further finite element simulations further reveal that the crack-guiding notches effectively suppress uncontrolled crack propagation through the whole mesh electrode, releasing accumulated strain only at the predefined notched locations in a well-controlled manner, and thus maintaining the overall conductivity of the hole mesh electrodes. This very convenient but effective CGN design holds great promise for broad applications in stretchable electronics, sensors, and displays.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr02993g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr02993g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性器件的快速发展对导电金属电极的拉伸性和稳定性提出了更高的要求,而导电金属电极是各种柔性技术中不可缺少的组成部分。在这项工作中,我们提出并展示了一种具有定向裂纹引导缺口(CGN)设计的新型孔网结构,该结构有助于分散拉伸应力/应变,同时有效地将裂纹限制在预缺口位置,最大限度地减少对电极膜结构连续性和导电性的损害。作为概念验证,制作了具有CGN设计的孔网薄膜(Pt/Au),并将其直接转移到弹性聚合物衬底(聚二甲基硅氧烷,PDMS)上,并在重复拉伸下进行了测试。研究发现,具有CGN设计的孔网电极具有显著增强的拉伸性和优异的导电性稳定性,可以承受高达20%的应变170次循环,与没有缺口的参考样品相比,这是一个显着的改进,后者通常在较低的应变下失效。进一步的有限元模拟进一步表明,裂纹引导缺口有效地抑制了整个网格电极的非受控裂纹扩展,仅在预定的缺口位置以良好的控制方式释放累积应变,从而保持了孔网格电极的整体导电性。这种非常方便而有效的CGN设计在可拉伸电子,传感器和显示器的广泛应用中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced stretchability and stability of micro hole mesh electrodes via a crack-guiding notch design
The rapid development of flexible devices demands higher stretchability and stability in conductive metal electrodes, which are indispensable components in a wide range of flexible technologies. In this work, we propose and demonstrate a novel hole mesh structure featuring a directional crack-guiding notch (CGN) design, which can help to disperse stretching stress/strain, while effectively confining cracks to pre-notched locations, minimizing harm to the structural continuity and electrical conductivity of the electrode film. As a proof of concept, hole mesh thin films (Pt/Au) with the CGN design were fabricated and transferred directly onto the elastic polymer substrate (polydimethylsiloxane, PDMS) and tested under repetitive stretching. It is found that the hole mesh electrodes, with CGN design, demonstrate significantly enhanced stretchability and excellent stability of conductivity, withstanding up to 20% strain for 170 cycles—a remarkable improvement compared to the reference samples without notches, which typically fail at lower strains. Further finite element simulations further reveal that the crack-guiding notches effectively suppress uncontrolled crack propagation through the whole mesh electrode, releasing accumulated strain only at the predefined notched locations in a well-controlled manner, and thus maintaining the overall conductivity of the hole mesh electrodes. This very convenient but effective CGN design holds great promise for broad applications in stretchable electronics, sensors, and displays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信