无电阻漂移的非晶相变记忆合金。

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaozhe Wang,Ruobing Wang,Suyang Sun,Ding Xu,Chao Nie,Zhou Zhou,Chenyu Wen,Junying Zhang,Ruixuan Chu,Xueyang Shen,Wen Zhou,Zhitang Song,Jiang-Jing Wang,En Ma,Wei Zhang
{"title":"无电阻漂移的非晶相变记忆合金。","authors":"Xiaozhe Wang,Ruobing Wang,Suyang Sun,Ding Xu,Chao Nie,Zhou Zhou,Chenyu Wen,Junying Zhang,Ruixuan Chu,Xueyang Shen,Wen Zhou,Zhitang Song,Jiang-Jing Wang,En Ma,Wei Zhang","doi":"10.1038/s41563-025-02361-0","DOIUrl":null,"url":null,"abstract":"Spontaneous structural relaxation is intrinsic to glassy materials due to their metastable nature. For phase-change materials, the resultant temporal change in electrical resistance seriously hampers neuromorphic computing applications. Here we report an ab-initio-calculation-informed design of amorphous phase-change materials composed of robust 'molecule-like' motifs, depriving the amorphous alloy of critical structural ingredients responsible for relaxation and, hence, resistance drift. We demonstrate amorphous CrTe3 thin films that display practically no resistance drift at any working temperature from -200 °C to 165 °C, and highlight the multilevel encoding ability via a hybrid opto-electronic approach. We further reveal that the same no-drift behaviour holds for melt-quenched amorphous CrTe3 in electronic devices. Moreover, the application potential of CrTe3 is testified by its incorporation in a vehicle with an automatic path-tracking function. Our work provides an alternative route to achieve requisite properties for potential phase-change neuromorphic computing via the judicious design of disordered phase-change materials.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"100 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amorphous phase-change memory alloy with no resistance drift.\",\"authors\":\"Xiaozhe Wang,Ruobing Wang,Suyang Sun,Ding Xu,Chao Nie,Zhou Zhou,Chenyu Wen,Junying Zhang,Ruixuan Chu,Xueyang Shen,Wen Zhou,Zhitang Song,Jiang-Jing Wang,En Ma,Wei Zhang\",\"doi\":\"10.1038/s41563-025-02361-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spontaneous structural relaxation is intrinsic to glassy materials due to their metastable nature. For phase-change materials, the resultant temporal change in electrical resistance seriously hampers neuromorphic computing applications. Here we report an ab-initio-calculation-informed design of amorphous phase-change materials composed of robust 'molecule-like' motifs, depriving the amorphous alloy of critical structural ingredients responsible for relaxation and, hence, resistance drift. We demonstrate amorphous CrTe3 thin films that display practically no resistance drift at any working temperature from -200 °C to 165 °C, and highlight the multilevel encoding ability via a hybrid opto-electronic approach. We further reveal that the same no-drift behaviour holds for melt-quenched amorphous CrTe3 in electronic devices. Moreover, the application potential of CrTe3 is testified by its incorporation in a vehicle with an automatic path-tracking function. Our work provides an alternative route to achieve requisite properties for potential phase-change neuromorphic computing via the judicious design of disordered phase-change materials.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02361-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02361-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于玻璃材料的亚稳性质,自发结构弛豫是其固有的。对于相变材料,由此产生的电阻时间变化严重阻碍了神经形态计算的应用。在这里,我们报告了一种由坚固的“类分子”基序组成的非晶态相变材料的初始计算设计,剥夺了非晶态合金中导致弛豫和电阻漂移的关键结构成分。我们展示了在-200°C至165°C的任何工作温度下几乎没有电阻漂移的非晶CrTe3薄膜,并通过混合光电方法突出了多层编码能力。我们进一步揭示了在电子器件中熔融淬火的非晶CrTe3具有相同的无漂移行为。此外,将CrTe3应用于具有自动路径跟踪功能的车辆中,证明了其应用潜力。我们的工作提供了另一种途径,通过合理设计无序相变材料来实现潜在相变神经形态计算所需的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amorphous phase-change memory alloy with no resistance drift.
Spontaneous structural relaxation is intrinsic to glassy materials due to their metastable nature. For phase-change materials, the resultant temporal change in electrical resistance seriously hampers neuromorphic computing applications. Here we report an ab-initio-calculation-informed design of amorphous phase-change materials composed of robust 'molecule-like' motifs, depriving the amorphous alloy of critical structural ingredients responsible for relaxation and, hence, resistance drift. We demonstrate amorphous CrTe3 thin films that display practically no resistance drift at any working temperature from -200 °C to 165 °C, and highlight the multilevel encoding ability via a hybrid opto-electronic approach. We further reveal that the same no-drift behaviour holds for melt-quenched amorphous CrTe3 in electronic devices. Moreover, the application potential of CrTe3 is testified by its incorporation in a vehicle with an automatic path-tracking function. Our work provides an alternative route to achieve requisite properties for potential phase-change neuromorphic computing via the judicious design of disordered phase-change materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信