高能量密度超级电容器用一维/二维分层纳米结构铁掺杂NiCoLDH的控制相位工程

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shakeel Ahmad, Muhammad Tariq, Henmei Ni, Hissah Saedoon Albaqawi, Afaq Ullah Khan, Sameerah I. Al-Saeedi, Kamran Tahir, Zainab M. Almarhoon, Magdi E.A. Zaki, Nacer Badi
{"title":"高能量密度超级电容器用一维/二维分层纳米结构铁掺杂NiCoLDH的控制相位工程","authors":"Shakeel Ahmad, Muhammad Tariq, Henmei Ni, Hissah Saedoon Albaqawi, Afaq Ullah Khan, Sameerah I. Al-Saeedi, Kamran Tahir, Zainab M. Almarhoon, Magdi E.A. Zaki, Nacer Badi","doi":"10.1016/j.jallcom.2025.184153","DOIUrl":null,"url":null,"abstract":"Synergistic interactions among various components, along with deliberate structural optimization, can finely tune the electronic properties and accelerate reaction kinetics, leading to a marked improvement in electrode material performance. In this work, we report the synthesis of Fe-doped NiCo-layered double hydroxides (LDH) nanosheet heterojunctions featuring a well-engineered two/three-dimensional (2D/3D) hierarchical architecture designed to suppress aggregation and layer restacking, thereby facilitating efficient ion intercalation and extraction during electrochemical processes. The Fe<sub>0.05</sub>/NiCoLDH electrode exhibits an outstanding specific capacitance of 2861<!-- --> <!-- -->F<!-- --> <!-- -->g⁻¹ at a current density of 1<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹. The assembled hybrid supercapacitor (Fe<sub>0.05</sub>/NiCoLDH//activated carbon) delivers a high energy density of 83<!-- --> <!-- -->Wh<!-- --> <!-- -->kg⁻¹ at a power density of 792<!-- --> <!-- -->kW<!-- --> <!-- -->kg⁻¹, along with excellent cycling stability, maintaining 89% capacitance retention after 1000 charge–discharge cycles. This study demonstrates that Fe<sub>0.05</sub>/NiCoLDH devices, featuring a stable multi-component hierarchical architecture and enhanced electrical conductivity, offer a promising approach to improving the electrochemical performance of supercapacitors.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"17 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled phase engineering of Fe doped NiCoLDH with 1D/2D hierarchical nanostructure for high energy density supercapacitors\",\"authors\":\"Shakeel Ahmad, Muhammad Tariq, Henmei Ni, Hissah Saedoon Albaqawi, Afaq Ullah Khan, Sameerah I. Al-Saeedi, Kamran Tahir, Zainab M. Almarhoon, Magdi E.A. Zaki, Nacer Badi\",\"doi\":\"10.1016/j.jallcom.2025.184153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synergistic interactions among various components, along with deliberate structural optimization, can finely tune the electronic properties and accelerate reaction kinetics, leading to a marked improvement in electrode material performance. In this work, we report the synthesis of Fe-doped NiCo-layered double hydroxides (LDH) nanosheet heterojunctions featuring a well-engineered two/three-dimensional (2D/3D) hierarchical architecture designed to suppress aggregation and layer restacking, thereby facilitating efficient ion intercalation and extraction during electrochemical processes. The Fe<sub>0.05</sub>/NiCoLDH electrode exhibits an outstanding specific capacitance of 2861<!-- --> <!-- -->F<!-- --> <!-- -->g⁻¹ at a current density of 1<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹. The assembled hybrid supercapacitor (Fe<sub>0.05</sub>/NiCoLDH//activated carbon) delivers a high energy density of 83<!-- --> <!-- -->Wh<!-- --> <!-- -->kg⁻¹ at a power density of 792<!-- --> <!-- -->kW<!-- --> <!-- -->kg⁻¹, along with excellent cycling stability, maintaining 89% capacitance retention after 1000 charge–discharge cycles. This study demonstrates that Fe<sub>0.05</sub>/NiCoLDH devices, featuring a stable multi-component hierarchical architecture and enhanced electrical conductivity, offer a promising approach to improving the electrochemical performance of supercapacitors.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.184153\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184153","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

各组分之间的协同作用,以及经过深思熟虑的结构优化,可以很好地调整电子特性,加速反应动力学,从而显著提高电极材料的性能。在这项工作中,我们报道了铁掺杂nico层状双氢氧化物(LDH)纳米片异质结的合成,该异质结具有精心设计的二维/三维(2D/3D)分层结构,旨在抑制聚集和层堆叠,从而促进电化学过程中有效的离子插入和提取。Fe0.05/NiCoLDH电极在电流密度为1 a g⁻¹时表现出2861 F g⁻¹的比电容。组装的混合超级电容器(Fe0.05/NiCoLDH//活性炭)在792 kW kg⁻¹的功率密度下提供83 Wh kg的高能量密度,并具有出色的循环稳定性,在1000次充放电循环后保持89%的电容保留率。该研究表明,Fe0.05/NiCoLDH器件具有稳定的多组分分层结构和增强的导电性,为提高超级电容器的电化学性能提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled phase engineering of Fe doped NiCoLDH with 1D/2D hierarchical nanostructure for high energy density supercapacitors
Synergistic interactions among various components, along with deliberate structural optimization, can finely tune the electronic properties and accelerate reaction kinetics, leading to a marked improvement in electrode material performance. In this work, we report the synthesis of Fe-doped NiCo-layered double hydroxides (LDH) nanosheet heterojunctions featuring a well-engineered two/three-dimensional (2D/3D) hierarchical architecture designed to suppress aggregation and layer restacking, thereby facilitating efficient ion intercalation and extraction during electrochemical processes. The Fe0.05/NiCoLDH electrode exhibits an outstanding specific capacitance of 2861 F g⁻¹ at a current density of 1 A g⁻¹. The assembled hybrid supercapacitor (Fe0.05/NiCoLDH//activated carbon) delivers a high energy density of 83 Wh kg⁻¹ at a power density of 792 kW kg⁻¹, along with excellent cycling stability, maintaining 89% capacitance retention after 1000 charge–discharge cycles. This study demonstrates that Fe0.05/NiCoLDH devices, featuring a stable multi-component hierarchical architecture and enhanced electrical conductivity, offer a promising approach to improving the electrochemical performance of supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信