用于超轻暗物质探测的优化量子传感器网络

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Adriel I. Santoso, Le Bin Ho
{"title":"用于超轻暗物质探测的优化量子传感器网络","authors":"Adriel I. Santoso, Le Bin Ho","doi":"10.1103/rv43-54zq","DOIUrl":null,"url":null,"abstract":"Dark matter (DM) remains one of the most compelling unresolved problems in fundamental physics, motivating the search for new detection approaches. We propose a network-based quantum sensor architecture to enhance sensitivity to ultralight DM fields. Each node in the network is a superconducting qubit, interconnected via controlled-Z gates in symmetric topologies such as line, ring, star, and fully connected graphs. We investigate four- and nine-qubit systems, optimizing both state preparation and measurement using a variational quantum metrology framework. This approach minimizes the quantum and classical Cramér-Rao bounds to identify optimal configurations. Bayesian inference is employed to extract the DM-induced phase shift from measurement outcomes. Our results show that optimized network configurations significantly outperform conventional Greenberger-Horne-Zeilinger-based protocols while maintaining shallow circuit depths compatible with noisy intermediate-scale quantum hardware. Sensitivity remains robust under local dephasing noise. These findings highlight the importance of network structure in quantum sensing and point toward scalable strategies for quantum-enhanced DM detection.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"115 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized quantum sensor networks for ultralight dark matter detection\",\"authors\":\"Adriel I. Santoso, Le Bin Ho\",\"doi\":\"10.1103/rv43-54zq\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dark matter (DM) remains one of the most compelling unresolved problems in fundamental physics, motivating the search for new detection approaches. We propose a network-based quantum sensor architecture to enhance sensitivity to ultralight DM fields. Each node in the network is a superconducting qubit, interconnected via controlled-Z gates in symmetric topologies such as line, ring, star, and fully connected graphs. We investigate four- and nine-qubit systems, optimizing both state preparation and measurement using a variational quantum metrology framework. This approach minimizes the quantum and classical Cramér-Rao bounds to identify optimal configurations. Bayesian inference is employed to extract the DM-induced phase shift from measurement outcomes. Our results show that optimized network configurations significantly outperform conventional Greenberger-Horne-Zeilinger-based protocols while maintaining shallow circuit depths compatible with noisy intermediate-scale quantum hardware. Sensitivity remains robust under local dephasing noise. These findings highlight the importance of network structure in quantum sensing and point toward scalable strategies for quantum-enhanced DM detection.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/rv43-54zq\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/rv43-54zq","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

暗物质(DM)仍然是基础物理学中最引人注目的未解决问题之一,促使人们寻找新的探测方法。我们提出了一种基于网络的量子传感器架构,以提高对超轻DM场的灵敏度。网络中的每个节点都是一个超导量子比特,通过对称拓扑(如线、环、星形和全连通图)中的受控z门相互连接。我们研究了四个和九个量子比特系统,使用变分量子计量框架优化状态制备和测量。该方法最小化了量子和经典cram r- rao边界,以确定最佳配置。采用贝叶斯推理从测量结果中提取dm引起的相移。我们的研究结果表明,优化后的网络配置显著优于传统的基于greenberg - horn - zeilinger的协议,同时保持与噪声中等规模量子硬件兼容的浅电路深度。在局部消相噪声下,灵敏度保持鲁棒性。这些发现强调了网络结构在量子传感中的重要性,并指出了量子增强DM检测的可扩展策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized quantum sensor networks for ultralight dark matter detection
Dark matter (DM) remains one of the most compelling unresolved problems in fundamental physics, motivating the search for new detection approaches. We propose a network-based quantum sensor architecture to enhance sensitivity to ultralight DM fields. Each node in the network is a superconducting qubit, interconnected via controlled-Z gates in symmetric topologies such as line, ring, star, and fully connected graphs. We investigate four- and nine-qubit systems, optimizing both state preparation and measurement using a variational quantum metrology framework. This approach minimizes the quantum and classical Cramér-Rao bounds to identify optimal configurations. Bayesian inference is employed to extract the DM-induced phase shift from measurement outcomes. Our results show that optimized network configurations significantly outperform conventional Greenberger-Horne-Zeilinger-based protocols while maintaining shallow circuit depths compatible with noisy intermediate-scale quantum hardware. Sensitivity remains robust under local dephasing noise. These findings highlight the importance of network structure in quantum sensing and point toward scalable strategies for quantum-enhanced DM detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信