非正态二元分布的点-多序列与多序列相关性的比值。

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Alessandro Barbiero
{"title":"非正态二元分布的点-多序列与多序列相关性的比值。","authors":"Alessandro Barbiero","doi":"10.1080/00273171.2025.2561947","DOIUrl":null,"url":null,"abstract":"<p><p>It is a well-known fact that for the bivariate normal distribution the ratio between the point-polyserial correlation (the linear correlation after one of the two variables is discretized into <i>k</i> categories with probabilities <math><mrow><msub><mrow><mi>p</mi></mrow><mi>i</mi></msub></mrow><mtext>,</mtext></math> <math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math>) and the polyserial correlation <math><mrow><mi>ρ</mi></mrow></math> (the linear correlation between the two normal components) remains constant with <math><mrow><mi>ρ</mi></mrow><mtext>,</mtext></math> keeping the <math><mrow><msub><mrow><mi>p</mi></mrow><mi>i</mi></msub></mrow></math>'s fixed. If we move away from the bivariate normal distribution, by considering non-normal margins and/or non-normal dependence structures, then the constancy of this ratio may get lost. In this work, the magnitude of the departure from the constancy condition is assessed for several combinations of margins (normal, uniform, exponential, Weibull) and copulas (Gauss, Frank, Gumbel, Clayton), also varying the distribution of the discretized variable. The results indicate that for many settings we are far from the condition of constancy, especially when highly asymmetrical marginal distributions are combined with copulas that allow for tail-dependence. In such cases, the linear correlation may even increase instead of decreasing, contrary to the usual expectation. This implies that most existing simulation techniques or statistical models for mixed-type data, which assume a linear relationship between point-polyserial and polyserial correlations, should be used very prudently and possibly reappraised.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-17"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Ratio Between Point-Polyserial and Polyserial Correlations for Non-Normal Bivariate Distributions.\",\"authors\":\"Alessandro Barbiero\",\"doi\":\"10.1080/00273171.2025.2561947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a well-known fact that for the bivariate normal distribution the ratio between the point-polyserial correlation (the linear correlation after one of the two variables is discretized into <i>k</i> categories with probabilities <math><mrow><msub><mrow><mi>p</mi></mrow><mi>i</mi></msub></mrow><mtext>,</mtext></math> <math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math>) and the polyserial correlation <math><mrow><mi>ρ</mi></mrow></math> (the linear correlation between the two normal components) remains constant with <math><mrow><mi>ρ</mi></mrow><mtext>,</mtext></math> keeping the <math><mrow><msub><mrow><mi>p</mi></mrow><mi>i</mi></msub></mrow></math>'s fixed. If we move away from the bivariate normal distribution, by considering non-normal margins and/or non-normal dependence structures, then the constancy of this ratio may get lost. In this work, the magnitude of the departure from the constancy condition is assessed for several combinations of margins (normal, uniform, exponential, Weibull) and copulas (Gauss, Frank, Gumbel, Clayton), also varying the distribution of the discretized variable. The results indicate that for many settings we are far from the condition of constancy, especially when highly asymmetrical marginal distributions are combined with copulas that allow for tail-dependence. In such cases, the linear correlation may even increase instead of decreasing, contrary to the usual expectation. This implies that most existing simulation techniques or statistical models for mixed-type data, which assume a linear relationship between point-polyserial and polyserial correlations, should be used very prudently and possibly reappraised.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2025.2561947\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2561947","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对于二元正态分布,点-多序列相关(两个变量中的一个被离散成k类后的线性相关,概率为pi, i=1,…,k)和多序列相关ρ(两个正态分量之间的线性相关)之间的比率与ρ保持不变,保持pi的固定。如果我们离开二元正态分布,通过考虑非正态边缘和/或非正态依赖结构,那么这个比率的常数可能会丢失。在这项工作中,对几种边缘(正态、均匀、指数、威布尔)和copulas(高斯、弗兰克、冈贝尔、克莱顿)的组合评估了偏离恒定条件的程度,也改变了离散变量的分布。结果表明,对于许多设置,我们离恒定的条件很远,特别是当高度不对称的边际分布与允许尾部依赖的copula结合在一起时。在这种情况下,线性相关性甚至可能增加而不是减少,这与通常的期望相反。这意味着大多数现有的混合类型数据的模拟技术或统计模型,假设点多序列和多序列相关性之间的线性关系,应该非常谨慎地使用,并可能重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Ratio Between Point-Polyserial and Polyserial Correlations for Non-Normal Bivariate Distributions.

It is a well-known fact that for the bivariate normal distribution the ratio between the point-polyserial correlation (the linear correlation after one of the two variables is discretized into k categories with probabilities pi, i=1,,k) and the polyserial correlation ρ (the linear correlation between the two normal components) remains constant with ρ, keeping the pi's fixed. If we move away from the bivariate normal distribution, by considering non-normal margins and/or non-normal dependence structures, then the constancy of this ratio may get lost. In this work, the magnitude of the departure from the constancy condition is assessed for several combinations of margins (normal, uniform, exponential, Weibull) and copulas (Gauss, Frank, Gumbel, Clayton), also varying the distribution of the discretized variable. The results indicate that for many settings we are far from the condition of constancy, especially when highly asymmetrical marginal distributions are combined with copulas that allow for tail-dependence. In such cases, the linear correlation may even increase instead of decreasing, contrary to the usual expectation. This implies that most existing simulation techniques or statistical models for mixed-type data, which assume a linear relationship between point-polyserial and polyserial correlations, should be used very prudently and possibly reappraised.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信