再生医学中的同轴生物打印:进展和新兴应用。

IF 4.6 2区 医学 Q2 CELL & TISSUE ENGINEERING
Isabella Demirdjian Guanche, Tina Joshua, Sara E Munkwitz, Matteo Simone Torquati, Hana Shah, Kashyap Komarraju Tadisina, Lukasz Witek, Vasudev Vivekanand Nayak, Paulo G Coelho
{"title":"再生医学中的同轴生物打印:进展和新兴应用。","authors":"Isabella Demirdjian Guanche, Tina Joshua, Sara E Munkwitz, Matteo Simone Torquati, Hana Shah, Kashyap Komarraju Tadisina, Lukasz Witek, Vasudev Vivekanand Nayak, Paulo G Coelho","doi":"10.1177/19373341251381677","DOIUrl":null,"url":null,"abstract":"<p><p>Coaxial extrusion-based bioprinting (EBB) is an emerging technology that enables the fabrication of biomimetic tissues with precise structural and biological complexities. This three-dimensional bioprinting technique utilizes specialized concentric nozzles to facilitate the simultaneous extrusion of distinct biomaterials, enabling the fabrication of layered constructs that closely resemble native tissues. Unlike traditional extrusion-based methods, coaxial printing allows for independent control over core and shell materials. This enables multimaterial integration, and tailored microenvironments that conventional extrusion methods cannot achieve. Recent technical innovations in coaxial EBB also include improved nozzle designs and bioink formulations, which have contributed to enhanced functional mimicry of native tissues and mechanical integrity of printed constructs. Coaxial EBB has demonstrated potential in spinal cord injury repair, perfusable small-diameter vessel engineering, accurate tumor microenvironment replication for oncology research, and complex organoid systems for personalized medicine. Despite these advancements, persistent challenges in coaxial EBB include maintaining cell viability under shear stress, optimizing bioink rheology, preventing nozzle clogging, and managing regulatory considerations. Future research directions involve the development of predictive computational models and the incorporation of innovative biomaterials for dynamic functionality. Addressing these challenges would allow the full therapeutic and clinical potential of coaxial bioprinting in regenerative medicine to be achieved. This review discusses and summarizes these advancements and limitations in coaxial EBB over the last decade, with an emphasis on applications in regenerative medicine.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coaxial Bioprinting in Regenerative Medicine: Advances and Emerging Applications.\",\"authors\":\"Isabella Demirdjian Guanche, Tina Joshua, Sara E Munkwitz, Matteo Simone Torquati, Hana Shah, Kashyap Komarraju Tadisina, Lukasz Witek, Vasudev Vivekanand Nayak, Paulo G Coelho\",\"doi\":\"10.1177/19373341251381677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coaxial extrusion-based bioprinting (EBB) is an emerging technology that enables the fabrication of biomimetic tissues with precise structural and biological complexities. This three-dimensional bioprinting technique utilizes specialized concentric nozzles to facilitate the simultaneous extrusion of distinct biomaterials, enabling the fabrication of layered constructs that closely resemble native tissues. Unlike traditional extrusion-based methods, coaxial printing allows for independent control over core and shell materials. This enables multimaterial integration, and tailored microenvironments that conventional extrusion methods cannot achieve. Recent technical innovations in coaxial EBB also include improved nozzle designs and bioink formulations, which have contributed to enhanced functional mimicry of native tissues and mechanical integrity of printed constructs. Coaxial EBB has demonstrated potential in spinal cord injury repair, perfusable small-diameter vessel engineering, accurate tumor microenvironment replication for oncology research, and complex organoid systems for personalized medicine. Despite these advancements, persistent challenges in coaxial EBB include maintaining cell viability under shear stress, optimizing bioink rheology, preventing nozzle clogging, and managing regulatory considerations. Future research directions involve the development of predictive computational models and the incorporation of innovative biomaterials for dynamic functionality. Addressing these challenges would allow the full therapeutic and clinical potential of coaxial bioprinting in regenerative medicine to be achieved. This review discusses and summarizes these advancements and limitations in coaxial EBB over the last decade, with an emphasis on applications in regenerative medicine.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19373341251381677\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251381677","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

基于同轴挤压的生物打印(EBB)是一项新兴技术,能够制造具有精确结构和生物复杂性的仿生组织。这种三维生物打印技术利用专门的同心喷嘴来促进不同生物材料的同时挤压,从而制造出与天然组织非常相似的分层结构。与传统的基于挤压的方法不同,同轴打印允许对核心和外壳材料进行独立控制。这使得多材料集成和定制微环境成为可能,这是传统挤压方法无法实现的。最近同轴EBB的技术创新还包括改进喷嘴设计和生物墨水配方,这有助于增强天然组织的功能模仿和打印结构的机械完整性。同轴EBB在脊髓损伤修复、可灌注的小直径血管工程、肿瘤研究的精确肿瘤微环境复制以及个性化医疗的复杂类器官系统方面已经证明了潜力。尽管取得了这些进展,但同轴EBB技术面临的挑战包括在剪切应力下保持细胞活力、优化生物链流变学、防止喷嘴堵塞以及管理监管方面的考虑。未来的研究方向包括预测计算模型的发展和动态功能创新生物材料的结合。解决这些挑战将使同轴生物打印在再生医学中的全部治疗和临床潜力得以实现。本文综述了近十年来同轴EBB技术的进展和局限性,重点介绍了其在再生医学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coaxial Bioprinting in Regenerative Medicine: Advances and Emerging Applications.

Coaxial extrusion-based bioprinting (EBB) is an emerging technology that enables the fabrication of biomimetic tissues with precise structural and biological complexities. This three-dimensional bioprinting technique utilizes specialized concentric nozzles to facilitate the simultaneous extrusion of distinct biomaterials, enabling the fabrication of layered constructs that closely resemble native tissues. Unlike traditional extrusion-based methods, coaxial printing allows for independent control over core and shell materials. This enables multimaterial integration, and tailored microenvironments that conventional extrusion methods cannot achieve. Recent technical innovations in coaxial EBB also include improved nozzle designs and bioink formulations, which have contributed to enhanced functional mimicry of native tissues and mechanical integrity of printed constructs. Coaxial EBB has demonstrated potential in spinal cord injury repair, perfusable small-diameter vessel engineering, accurate tumor microenvironment replication for oncology research, and complex organoid systems for personalized medicine. Despite these advancements, persistent challenges in coaxial EBB include maintaining cell viability under shear stress, optimizing bioink rheology, preventing nozzle clogging, and managing regulatory considerations. Future research directions involve the development of predictive computational models and the incorporation of innovative biomaterials for dynamic functionality. Addressing these challenges would allow the full therapeutic and clinical potential of coaxial bioprinting in regenerative medicine to be achieved. This review discusses and summarizes these advancements and limitations in coaxial EBB over the last decade, with an emphasis on applications in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信