基于和谐的分布式单细胞多组学数据集成。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2025-09-30 eCollection Date: 2025-09-01 DOI:10.1371/journal.pcbi.1013526
Ruizhi Yuan, Ziqi Rong, Haoran Hu, Tianhao Liu, Shiyue Tao, Wei Chen, Lu Tang
{"title":"基于和谐的分布式单细胞多组学数据集成。","authors":"Ruizhi Yuan, Ziqi Rong, Haoran Hu, Tianhao Liu, Shiyue Tao, Wei Chen, Lu Tang","doi":"10.1371/journal.pcbi.1013526","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale single-cell projects generate rapidly growing datasets, but downstream analysis is often confounded by data sources, requiring data integration methods to do correction. Existing data integration methods typically require data centralization, raising privacy and security concerns. Here, we introduce Federated Harmony, a novel method combining properties of federated learning with Harmony algorithm to integrate decentralized omics data. This approach preserves privacy by avoiding raw data sharing while maintaining integration performance comparable to Harmony. Experiments on various types of single-cell data showcase superior results, highlighting a novel data integration approach for distributed multi-omics data without compromising data privacy or analytical performance.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013526"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harmony-based data integration for distributed single-cell multi-omics data.\",\"authors\":\"Ruizhi Yuan, Ziqi Rong, Haoran Hu, Tianhao Liu, Shiyue Tao, Wei Chen, Lu Tang\",\"doi\":\"10.1371/journal.pcbi.1013526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale single-cell projects generate rapidly growing datasets, but downstream analysis is often confounded by data sources, requiring data integration methods to do correction. Existing data integration methods typically require data centralization, raising privacy and security concerns. Here, we introduce Federated Harmony, a novel method combining properties of federated learning with Harmony algorithm to integrate decentralized omics data. This approach preserves privacy by avoiding raw data sharing while maintaining integration performance comparable to Harmony. Experiments on various types of single-cell data showcase superior results, highlighting a novel data integration approach for distributed multi-omics data without compromising data privacy or analytical performance.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013526\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013526\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大规模的单细胞项目产生快速增长的数据集,但下游分析经常被数据源混淆,需要数据集成方法进行校正。现有的数据集成方法通常需要数据集中,这引起了隐私和安全方面的担忧。本文介绍了一种结合联邦学习特性和Harmony算法的分布式组学数据集成新方法——Federated Harmony。这种方法通过避免原始数据共享来保护隐私,同时保持与Harmony相当的集成性能。在不同类型的单细胞数据上的实验显示了优异的结果,突出了分布式多组学数据的新型数据集成方法,而不影响数据隐私或分析性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmony-based data integration for distributed single-cell multi-omics data.

Harmony-based data integration for distributed single-cell multi-omics data.

Harmony-based data integration for distributed single-cell multi-omics data.

Harmony-based data integration for distributed single-cell multi-omics data.

Large-scale single-cell projects generate rapidly growing datasets, but downstream analysis is often confounded by data sources, requiring data integration methods to do correction. Existing data integration methods typically require data centralization, raising privacy and security concerns. Here, we introduce Federated Harmony, a novel method combining properties of federated learning with Harmony algorithm to integrate decentralized omics data. This approach preserves privacy by avoiding raw data sharing while maintaining integration performance comparable to Harmony. Experiments on various types of single-cell data showcase superior results, highlighting a novel data integration approach for distributed multi-omics data without compromising data privacy or analytical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信