Sinelisiwe Matubatuba, Chontrelle Willemse, Khayelihle Brian Makhathini, Carine Smith, David Fisher, Shireen Mentor
{"title":"HIV-1病毒蛋白对脑微血管的影响:体外血脑屏障模型。","authors":"Sinelisiwe Matubatuba, Chontrelle Willemse, Khayelihle Brian Makhathini, Carine Smith, David Fisher, Shireen Mentor","doi":"10.14814/phy2.70593","DOIUrl":null,"url":null,"abstract":"<p><p>The central nervous system (CNS) serves as a sanctuary for the Human Immunodeficiency Virus (HIV), which is facilitated by HIV's ability to breach the blood-brain barrier (BBB). BBB dysfunction occurs in the earliest stages of an HIV-1 infection. The immune-privileged CNS reduces harmful inflammatory responses, detrimental to the neuronal environment. BBB disruption, however, contributes to comorbidities in HIV, like cerebrovascular disease and neurocognitive problems. A 2-dimensional in vitro BBB model was employed to assess the effect of HL2/3 cell paracrine factors on select physiological parameters: cell proliferation, viability, toxicity, suppression, and morphology. BBB integrity was assessed using transendothelial electrical resistance measurements. The study utilized immortalized mouse brain endothelial cell monocultures and co-cultures with the HL2/3 cell line, emulating an in vivo HIV-1 effect on the BBB. A concentration-dependent decline in cellular proliferation rates and viability was observed upon exposure to HL2/3 paracrine factors. Moreover, an elevation in cellular suppression, cell death, and cell toxicity was observed. Permeability studies confirmed decreased impermeability after exposure to HIV-1 viral proteins in select in vitro BBB model systems. The impact of HIV viral proteins on brain capillary endothelium is critical to elucidate pathogen-induced cerebrovascular disease progression and vascular cognitive impairment in patients.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 19","pages":"e70593"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484298/pdf/","citationCount":"0","resultStr":"{\"title\":\"HIV-1 viral protein effect on cerebral microvasculature: An in vitro blood-brain barrier model.\",\"authors\":\"Sinelisiwe Matubatuba, Chontrelle Willemse, Khayelihle Brian Makhathini, Carine Smith, David Fisher, Shireen Mentor\",\"doi\":\"10.14814/phy2.70593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The central nervous system (CNS) serves as a sanctuary for the Human Immunodeficiency Virus (HIV), which is facilitated by HIV's ability to breach the blood-brain barrier (BBB). BBB dysfunction occurs in the earliest stages of an HIV-1 infection. The immune-privileged CNS reduces harmful inflammatory responses, detrimental to the neuronal environment. BBB disruption, however, contributes to comorbidities in HIV, like cerebrovascular disease and neurocognitive problems. A 2-dimensional in vitro BBB model was employed to assess the effect of HL2/3 cell paracrine factors on select physiological parameters: cell proliferation, viability, toxicity, suppression, and morphology. BBB integrity was assessed using transendothelial electrical resistance measurements. The study utilized immortalized mouse brain endothelial cell monocultures and co-cultures with the HL2/3 cell line, emulating an in vivo HIV-1 effect on the BBB. A concentration-dependent decline in cellular proliferation rates and viability was observed upon exposure to HL2/3 paracrine factors. Moreover, an elevation in cellular suppression, cell death, and cell toxicity was observed. Permeability studies confirmed decreased impermeability after exposure to HIV-1 viral proteins in select in vitro BBB model systems. The impact of HIV viral proteins on brain capillary endothelium is critical to elucidate pathogen-induced cerebrovascular disease progression and vascular cognitive impairment in patients.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 19\",\"pages\":\"e70593\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
HIV-1 viral protein effect on cerebral microvasculature: An in vitro blood-brain barrier model.
The central nervous system (CNS) serves as a sanctuary for the Human Immunodeficiency Virus (HIV), which is facilitated by HIV's ability to breach the blood-brain barrier (BBB). BBB dysfunction occurs in the earliest stages of an HIV-1 infection. The immune-privileged CNS reduces harmful inflammatory responses, detrimental to the neuronal environment. BBB disruption, however, contributes to comorbidities in HIV, like cerebrovascular disease and neurocognitive problems. A 2-dimensional in vitro BBB model was employed to assess the effect of HL2/3 cell paracrine factors on select physiological parameters: cell proliferation, viability, toxicity, suppression, and morphology. BBB integrity was assessed using transendothelial electrical resistance measurements. The study utilized immortalized mouse brain endothelial cell monocultures and co-cultures with the HL2/3 cell line, emulating an in vivo HIV-1 effect on the BBB. A concentration-dependent decline in cellular proliferation rates and viability was observed upon exposure to HL2/3 paracrine factors. Moreover, an elevation in cellular suppression, cell death, and cell toxicity was observed. Permeability studies confirmed decreased impermeability after exposure to HIV-1 viral proteins in select in vitro BBB model systems. The impact of HIV viral proteins on brain capillary endothelium is critical to elucidate pathogen-induced cerebrovascular disease progression and vascular cognitive impairment in patients.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.