质子交换膜电解金属氧氧化还原的电子调谐。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xingen Lin, Peigen Liu, Jie Zheng, Jie Xu, Zihan Wang, Zhixuan Chen, Ze Lin, Xusheng Zheng, Xin Wang, Xianhui Ma, Dayin He, Xuyan Zhao, Ge Yu, Junmin Li, Sulei Hu, Huang Zhou, Wei-Xue Li, Yuen Wu
{"title":"质子交换膜电解金属氧氧化还原的电子调谐。","authors":"Xingen Lin, Peigen Liu, Jie Zheng, Jie Xu, Zihan Wang, Zhixuan Chen, Ze Lin, Xusheng Zheng, Xin Wang, Xianhui Ma, Dayin He, Xuyan Zhao, Ge Yu, Junmin Li, Sulei Hu, Huang Zhou, Wei-Xue Li, Yuen Wu","doi":"10.1038/s41467-025-63721-7","DOIUrl":null,"url":null,"abstract":"<p><p>The metal-oxygen redox behavior governs the performance of transition metal oxides in many electrochemical reactions, especially for RuO<sub>2</sub> with the activity-stability paradox in the anode oxygen evolution reaction of proton exchange membrane water electrolyzers. Herein, we modulate the electronic structure of RuO<sub>2</sub> near the Fermi level to promote reversible Ru redox while suppressing the oxidative release of lattice oxygen. As a result, the RuO<sub>2</sub> integrated with electron-rich p-block metals Sb achieves an overpotential of 220 mV and long-term operational stability of 1200 h at 10 mA cm<sup>-2</sup>. The assembled proton exchange membrane water electrolyzers can operate steadily over 100 h at 100, 500, and 1000 mA cm<sup>-2</sup>. Further advanced in-situ characterizations reveal the more reversible and milder Ru redox and the passivated lattice oxygen reactivity, which suppresses drastic structural changes of RuO<sub>2</sub> during the oxygen evolution reaction. This work highlights the importance of engineering metal-oxygen redox behavior and provides insights for designing high-performance catalysts for energy conversion and storage devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8709"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electronic tuning of RuO₂ polarizes metal-oxygen redox for proton exchange membrane water electrolysis.\",\"authors\":\"Xingen Lin, Peigen Liu, Jie Zheng, Jie Xu, Zihan Wang, Zhixuan Chen, Ze Lin, Xusheng Zheng, Xin Wang, Xianhui Ma, Dayin He, Xuyan Zhao, Ge Yu, Junmin Li, Sulei Hu, Huang Zhou, Wei-Xue Li, Yuen Wu\",\"doi\":\"10.1038/s41467-025-63721-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metal-oxygen redox behavior governs the performance of transition metal oxides in many electrochemical reactions, especially for RuO<sub>2</sub> with the activity-stability paradox in the anode oxygen evolution reaction of proton exchange membrane water electrolyzers. Herein, we modulate the electronic structure of RuO<sub>2</sub> near the Fermi level to promote reversible Ru redox while suppressing the oxidative release of lattice oxygen. As a result, the RuO<sub>2</sub> integrated with electron-rich p-block metals Sb achieves an overpotential of 220 mV and long-term operational stability of 1200 h at 10 mA cm<sup>-2</sup>. The assembled proton exchange membrane water electrolyzers can operate steadily over 100 h at 100, 500, and 1000 mA cm<sup>-2</sup>. Further advanced in-situ characterizations reveal the more reversible and milder Ru redox and the passivated lattice oxygen reactivity, which suppresses drastic structural changes of RuO<sub>2</sub> during the oxygen evolution reaction. This work highlights the importance of engineering metal-oxygen redox behavior and provides insights for designing high-performance catalysts for energy conversion and storage devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8709\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63721-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63721-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

金属-氧氧化还原行为决定了过渡金属氧化物在许多电化学反应中的性能,特别是在质子交换膜水电解槽阳极析氧反应中具有活性-稳定性悖论的RuO2。在此,我们在费米能级附近调节RuO2的电子结构,以促进可逆的Ru氧化还原,同时抑制晶格氧的氧化释放。结果表明,与富电子p块金属Sb集成的RuO2在10 mA cm-2下获得了220 mV的过电位和1200 h的长期工作稳定性。组装的质子交换膜水电解槽可以在100、500和1000 mA cm-2下稳定运行100小时以上。进一步的原位表征表明,钌具有更温和的可逆氧化还原和钝化的晶格氧反应活性,从而抑制了析氧反应过程中RuO2的剧烈结构变化。这项工作强调了工程金属-氧氧化还原行为的重要性,并为设计用于能量转换和存储设备的高性能催化剂提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic tuning of RuO₂ polarizes metal-oxygen redox for proton exchange membrane water electrolysis.

The metal-oxygen redox behavior governs the performance of transition metal oxides in many electrochemical reactions, especially for RuO2 with the activity-stability paradox in the anode oxygen evolution reaction of proton exchange membrane water electrolyzers. Herein, we modulate the electronic structure of RuO2 near the Fermi level to promote reversible Ru redox while suppressing the oxidative release of lattice oxygen. As a result, the RuO2 integrated with electron-rich p-block metals Sb achieves an overpotential of 220 mV and long-term operational stability of 1200 h at 10 mA cm-2. The assembled proton exchange membrane water electrolyzers can operate steadily over 100 h at 100, 500, and 1000 mA cm-2. Further advanced in-situ characterizations reveal the more reversible and milder Ru redox and the passivated lattice oxygen reactivity, which suppresses drastic structural changes of RuO2 during the oxygen evolution reaction. This work highlights the importance of engineering metal-oxygen redox behavior and provides insights for designing high-performance catalysts for energy conversion and storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信