研究三维沟槽结构对hfo2基铁电电容器的影响。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zijie Zheng, Zuopu Zhou, Yue Chen, Xiaolin Wang, Leming Jiao, Dong Zhang, Yang Feng, Xiao Gong
{"title":"研究三维沟槽结构对hfo2基铁电电容器的影响。","authors":"Zijie Zheng, Zuopu Zhou, Yue Chen, Xiaolin Wang, Leming Jiao, Dong Zhang, Yang Feng, Xiao Gong","doi":"10.1039/d5na00659g","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroelectric (Fe) devices with 3D trench structures are highly promising to fulfill the demand for high-density and low-power memory applications. However, the potential effects of structure-induced strain on the Fe films' properties remain unclear. This work investigates the homogeneity of HfO<sub>2</sub>-based Fe trench capacitors across 2D planar to 3D trench structures. Systematic device characterization and temperature studies reveal consistent ferroelectric properties of the fabricated devices. Notably, the findings indicate that the large curvature of trench sidewalls minimally affects the ferroelectricity of HfZrO<sub>2</sub> (HZO) thin films, affirming their suitability for 3D structures. Meanwhile, the trench capacitors exhibit good reliability and retention characteristics, making them promising for high-density memory applications. This study provides valuable insights for 3D Fe capacitor development, emphasizing the potential of HfO<sub>2</sub>-based Fe materials to advance memory technology.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of 3D trench structures on HfO<sub>2</sub>-based ferroelectric capacitors.\",\"authors\":\"Zijie Zheng, Zuopu Zhou, Yue Chen, Xiaolin Wang, Leming Jiao, Dong Zhang, Yang Feng, Xiao Gong\",\"doi\":\"10.1039/d5na00659g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroelectric (Fe) devices with 3D trench structures are highly promising to fulfill the demand for high-density and low-power memory applications. However, the potential effects of structure-induced strain on the Fe films' properties remain unclear. This work investigates the homogeneity of HfO<sub>2</sub>-based Fe trench capacitors across 2D planar to 3D trench structures. Systematic device characterization and temperature studies reveal consistent ferroelectric properties of the fabricated devices. Notably, the findings indicate that the large curvature of trench sidewalls minimally affects the ferroelectricity of HfZrO<sub>2</sub> (HZO) thin films, affirming their suitability for 3D structures. Meanwhile, the trench capacitors exhibit good reliability and retention characteristics, making them promising for high-density memory applications. This study provides valuable insights for 3D Fe capacitor development, emphasizing the potential of HfO<sub>2</sub>-based Fe materials to advance memory technology.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00659g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00659g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有三维沟槽结构的铁电(Fe)器件在满足高密度和低功耗存储应用的需求方面具有很高的前景。然而,结构诱导应变对Fe薄膜性能的潜在影响尚不清楚。本工作研究了基于hfo2的Fe沟槽电容器在二维平面到三维沟槽结构中的均匀性。系统的器件表征和温度研究表明,制备的器件具有一致的铁电特性。值得注意的是,研究结果表明,沟槽侧壁的大曲率对HfZrO2 (HZO)薄膜的铁电性影响最小,证实了其对3D结构的适用性。同时,沟槽电容器具有良好的可靠性和保持特性,使其在高密度存储器应用中具有前景。该研究为3D Fe电容器的发展提供了有价值的见解,强调了hfo2基Fe材料在推进存储技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the impact of 3D trench structures on HfO2-based ferroelectric capacitors.

Ferroelectric (Fe) devices with 3D trench structures are highly promising to fulfill the demand for high-density and low-power memory applications. However, the potential effects of structure-induced strain on the Fe films' properties remain unclear. This work investigates the homogeneity of HfO2-based Fe trench capacitors across 2D planar to 3D trench structures. Systematic device characterization and temperature studies reveal consistent ferroelectric properties of the fabricated devices. Notably, the findings indicate that the large curvature of trench sidewalls minimally affects the ferroelectricity of HfZrO2 (HZO) thin films, affirming their suitability for 3D structures. Meanwhile, the trench capacitors exhibit good reliability and retention characteristics, making them promising for high-density memory applications. This study provides valuable insights for 3D Fe capacitor development, emphasizing the potential of HfO2-based Fe materials to advance memory technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信