Shamija Sherryl Rmr, Sudhan Mb, Deeptha R, Thamizharasi M, Vidyasri P
{"title":"具有不确定性感知分割和切换Atrous Bifovea EfficientNetB7肾病变亚型分类的相位感知交叉尺度U-MAMba。","authors":"Shamija Sherryl Rmr, Sudhan Mb, Deeptha R, Thamizharasi M, Vidyasri P","doi":"10.1007/s10103-025-04644-z","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney lesion subtype identification is essential for precise diagnosis and personalized treatment planning. However, achieving reliable classification remains challenging due to factors such as inter-patient anatomical variability, incomplete multi-phase CT acquisitions, and ill-defined or overlapping lesion boundaries. In addition, genetic and ethnic morphological variations introduce inconsistent imaging patterns, reducing the generalizability of conventional deep learning models. To address these challenges, we introduce a unified framework called Phase-aware Cross-Scale U-MAMba and Switch Atrous Bifovea EfficientNet B7 (PCU-SABENet), which integrates multi-phase reconstruction, fine-grained lesion segmentation, and robust subtype classification. The PhaseGAN-3D synthesizes missing CT phases using binary mask-guided inter-phase priors, enabling complete four-phase reconstruction even under partial acquisition conditions. The PCU segmentation module combines Contextual Attention Blocks, Cross-Scale Skip Connections, and uncertainty-aware pseudo-labeling to delineate lesion boundaries with high anatomical fidelity. These enhancements help mitigate low contrast and intra-class ambiguity. For classification, SABENet employs Switch Atrous Convolution for multi-scale receptive field adaptation, Hierarchical Tree Pooling for structure-aware abstraction, and Bi-Fovea Self-Attention to emphasize fine lesion cues and global morphology. This configuration is particularly effective in addressing morphological diversity across patient populations. Experimental results show that the proposed model achieves state-of-the-art performance, with 99.3% classification accuracy, 94.8% Dice similarity, 89.3% IoU, 98.8% precision, 99.2% recall, a phase-consistency score of 0.94, and a subtype confidence deviation of 0.08. Moreover, the model generalizes well on external datasets (TCIA) with 98.6% accuracy and maintains efficient computational performance, requiring only 0.138 GFLOPs and 8.2 ms inference time. These outcomes confirm the model's robustness in phase-incomplete settings and its adaptability to diverse patient cohorts. The PCU-SABENet framework sets a new standard in kidney lesion subtype analysis, combining segmentation precision with clinically actionable classification, thus offering a powerful tool for enhancing diagnostic accuracy and decision-making in real-world renal cancer management.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"40 1","pages":"398"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phase-aware Cross-Scale U-MAMba with uncertainty-aware segmentation and Switch Atrous Bifovea EfficientNetB7 classification of kidney lesion subtype.\",\"authors\":\"Shamija Sherryl Rmr, Sudhan Mb, Deeptha R, Thamizharasi M, Vidyasri P\",\"doi\":\"10.1007/s10103-025-04644-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kidney lesion subtype identification is essential for precise diagnosis and personalized treatment planning. However, achieving reliable classification remains challenging due to factors such as inter-patient anatomical variability, incomplete multi-phase CT acquisitions, and ill-defined or overlapping lesion boundaries. In addition, genetic and ethnic morphological variations introduce inconsistent imaging patterns, reducing the generalizability of conventional deep learning models. To address these challenges, we introduce a unified framework called Phase-aware Cross-Scale U-MAMba and Switch Atrous Bifovea EfficientNet B7 (PCU-SABENet), which integrates multi-phase reconstruction, fine-grained lesion segmentation, and robust subtype classification. The PhaseGAN-3D synthesizes missing CT phases using binary mask-guided inter-phase priors, enabling complete four-phase reconstruction even under partial acquisition conditions. The PCU segmentation module combines Contextual Attention Blocks, Cross-Scale Skip Connections, and uncertainty-aware pseudo-labeling to delineate lesion boundaries with high anatomical fidelity. These enhancements help mitigate low contrast and intra-class ambiguity. For classification, SABENet employs Switch Atrous Convolution for multi-scale receptive field adaptation, Hierarchical Tree Pooling for structure-aware abstraction, and Bi-Fovea Self-Attention to emphasize fine lesion cues and global morphology. This configuration is particularly effective in addressing morphological diversity across patient populations. Experimental results show that the proposed model achieves state-of-the-art performance, with 99.3% classification accuracy, 94.8% Dice similarity, 89.3% IoU, 98.8% precision, 99.2% recall, a phase-consistency score of 0.94, and a subtype confidence deviation of 0.08. Moreover, the model generalizes well on external datasets (TCIA) with 98.6% accuracy and maintains efficient computational performance, requiring only 0.138 GFLOPs and 8.2 ms inference time. These outcomes confirm the model's robustness in phase-incomplete settings and its adaptability to diverse patient cohorts. The PCU-SABENet framework sets a new standard in kidney lesion subtype analysis, combining segmentation precision with clinically actionable classification, thus offering a powerful tool for enhancing diagnostic accuracy and decision-making in real-world renal cancer management.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":\"40 1\",\"pages\":\"398\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-025-04644-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-025-04644-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A phase-aware Cross-Scale U-MAMba with uncertainty-aware segmentation and Switch Atrous Bifovea EfficientNetB7 classification of kidney lesion subtype.
Kidney lesion subtype identification is essential for precise diagnosis and personalized treatment planning. However, achieving reliable classification remains challenging due to factors such as inter-patient anatomical variability, incomplete multi-phase CT acquisitions, and ill-defined or overlapping lesion boundaries. In addition, genetic and ethnic morphological variations introduce inconsistent imaging patterns, reducing the generalizability of conventional deep learning models. To address these challenges, we introduce a unified framework called Phase-aware Cross-Scale U-MAMba and Switch Atrous Bifovea EfficientNet B7 (PCU-SABENet), which integrates multi-phase reconstruction, fine-grained lesion segmentation, and robust subtype classification. The PhaseGAN-3D synthesizes missing CT phases using binary mask-guided inter-phase priors, enabling complete four-phase reconstruction even under partial acquisition conditions. The PCU segmentation module combines Contextual Attention Blocks, Cross-Scale Skip Connections, and uncertainty-aware pseudo-labeling to delineate lesion boundaries with high anatomical fidelity. These enhancements help mitigate low contrast and intra-class ambiguity. For classification, SABENet employs Switch Atrous Convolution for multi-scale receptive field adaptation, Hierarchical Tree Pooling for structure-aware abstraction, and Bi-Fovea Self-Attention to emphasize fine lesion cues and global morphology. This configuration is particularly effective in addressing morphological diversity across patient populations. Experimental results show that the proposed model achieves state-of-the-art performance, with 99.3% classification accuracy, 94.8% Dice similarity, 89.3% IoU, 98.8% precision, 99.2% recall, a phase-consistency score of 0.94, and a subtype confidence deviation of 0.08. Moreover, the model generalizes well on external datasets (TCIA) with 98.6% accuracy and maintains efficient computational performance, requiring only 0.138 GFLOPs and 8.2 ms inference time. These outcomes confirm the model's robustness in phase-incomplete settings and its adaptability to diverse patient cohorts. The PCU-SABENet framework sets a new standard in kidney lesion subtype analysis, combining segmentation precision with clinically actionable classification, thus offering a powerful tool for enhancing diagnostic accuracy and decision-making in real-world renal cancer management.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.