多功能生物聚合物-羟基磷灰石复合支架在骨髓炎治疗和骨再生中的抗生素递送。

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Tehseen Riaz, Anila Asif, Rabia Zeeshan, Tanya J Levingstone, Faiza Sharif, Nicholas Dunne
{"title":"多功能生物聚合物-羟基磷灰石复合支架在骨髓炎治疗和骨再生中的抗生素递送。","authors":"Tehseen Riaz, Anila Asif, Rabia Zeeshan, Tanya J Levingstone, Faiza Sharif, Nicholas Dunne","doi":"10.1177/08853282251383102","DOIUrl":null,"url":null,"abstract":"<p><p>High bone-localized concentrations of antimicrobial agents are necessary for the long-term effective treatment of chronic osteomyelitis, particularly in cases of severe infection and bone loss. This study addressed infection control and bone regeneration simultaneously using hydroxyapatite and natural biopolymers. Moxifloxacin hydrochloride was delivered via composite scaffolds produced from polyvinyl alcohol/gelatin and hydroxyapatite with potential applications in osteomyelitis treatment and bone tissue engineering. The composite scaffolds exhibited a well-defined porous architecture, characterised by macropores (≥100 µm) and micropores (≤20 µm), facilitating cellular infiltration and drug loading. Biomineralization and cell culture assays were used to evaluate the scaffold's bioactivity and biocompatibility. Analyses of mineralized scaffolds using Fourier-transform infrared spectroscopy and scanning electron microscopy revealed HA nucleation on the scaffold's surface after immersion in simulated bodily fluid for varied time points. Protein adsorption and haemolysis tests were conducted to confirm the blood compatibility of scaffolds. Cell culture studies using human mesenchymal stem cells indicated non-cytotoxicity and robust cell adhesion. These findings suggest the potential suitability of these scaffolds for future clinical applications in the treatment of chronic osteomyelitis and bone regeneration.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251383102"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional biopolymer-hydroxyapatite composite scaffolds for antibiotic delivery in osteomyelitis treatment and bone regeneration.\",\"authors\":\"Tehseen Riaz, Anila Asif, Rabia Zeeshan, Tanya J Levingstone, Faiza Sharif, Nicholas Dunne\",\"doi\":\"10.1177/08853282251383102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High bone-localized concentrations of antimicrobial agents are necessary for the long-term effective treatment of chronic osteomyelitis, particularly in cases of severe infection and bone loss. This study addressed infection control and bone regeneration simultaneously using hydroxyapatite and natural biopolymers. Moxifloxacin hydrochloride was delivered via composite scaffolds produced from polyvinyl alcohol/gelatin and hydroxyapatite with potential applications in osteomyelitis treatment and bone tissue engineering. The composite scaffolds exhibited a well-defined porous architecture, characterised by macropores (≥100 µm) and micropores (≤20 µm), facilitating cellular infiltration and drug loading. Biomineralization and cell culture assays were used to evaluate the scaffold's bioactivity and biocompatibility. Analyses of mineralized scaffolds using Fourier-transform infrared spectroscopy and scanning electron microscopy revealed HA nucleation on the scaffold's surface after immersion in simulated bodily fluid for varied time points. Protein adsorption and haemolysis tests were conducted to confirm the blood compatibility of scaffolds. Cell culture studies using human mesenchymal stem cells indicated non-cytotoxicity and robust cell adhesion. These findings suggest the potential suitability of these scaffolds for future clinical applications in the treatment of chronic osteomyelitis and bone regeneration.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251383102\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251383102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251383102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于慢性骨髓炎的长期有效治疗,特别是在严重感染和骨质流失的情况下,骨局部高浓度的抗菌药物是必要的。本研究同时利用羟基磷灰石和天然生物聚合物进行感染控制和骨再生。盐酸莫西沙星通过聚乙烯醇/明胶和羟基磷灰石制成的复合支架递送,在骨髓炎治疗和骨组织工程中具有潜在的应用前景。复合支架具有明确的多孔结构,具有大孔(≥100µm)和微孔(≤20µm),有利于细胞浸润和载药。采用生物矿化和细胞培养试验评价支架的生物活性和生物相容性。利用傅里叶变换红外光谱和扫描电镜对矿化支架进行分析,发现在不同时间点浸泡在模拟体液后,支架表面出现了HA成核。通过蛋白吸附和溶血实验来证实支架的血液相容性。利用人间充质干细胞进行的细胞培养研究表明其无细胞毒性和强大的细胞粘附性。这些发现表明这些支架在治疗慢性骨髓炎和骨再生方面具有潜在的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional biopolymer-hydroxyapatite composite scaffolds for antibiotic delivery in osteomyelitis treatment and bone regeneration.

High bone-localized concentrations of antimicrobial agents are necessary for the long-term effective treatment of chronic osteomyelitis, particularly in cases of severe infection and bone loss. This study addressed infection control and bone regeneration simultaneously using hydroxyapatite and natural biopolymers. Moxifloxacin hydrochloride was delivered via composite scaffolds produced from polyvinyl alcohol/gelatin and hydroxyapatite with potential applications in osteomyelitis treatment and bone tissue engineering. The composite scaffolds exhibited a well-defined porous architecture, characterised by macropores (≥100 µm) and micropores (≤20 µm), facilitating cellular infiltration and drug loading. Biomineralization and cell culture assays were used to evaluate the scaffold's bioactivity and biocompatibility. Analyses of mineralized scaffolds using Fourier-transform infrared spectroscopy and scanning electron microscopy revealed HA nucleation on the scaffold's surface after immersion in simulated bodily fluid for varied time points. Protein adsorption and haemolysis tests were conducted to confirm the blood compatibility of scaffolds. Cell culture studies using human mesenchymal stem cells indicated non-cytotoxicity and robust cell adhesion. These findings suggest the potential suitability of these scaffolds for future clinical applications in the treatment of chronic osteomyelitis and bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信