Christian L Egly, Alex Shen, Tri Q Do, Carlos Tellet Cabiya, Paxton A Ritschel, Suah Woo, Matthew J Ku, Brian P Delisle, Brett Kroncke, Bjorn C Knollmann
{"title":"高通量筛选确定基因型特异性治疗通道病。","authors":"Christian L Egly, Alex Shen, Tri Q Do, Carlos Tellet Cabiya, Paxton A Ritschel, Suah Woo, Matthew J Ku, Brian P Delisle, Brett Kroncke, Bjorn C Knollmann","doi":"10.1172/jci.insight.191697","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic diseases such as ion-channelopathies substantially burden human health. Existing treatments are limited and not genotype specific. Here, we report a two-step high-throughput approach to rapidly identify drug candidates for repurposing as genotype-specific therapy. We first screened 1,680 medicines using a new thallium-flux trafficking assay against KV11.1 gene variants causing Long QT Syndrome (LQTS), an ion-channelopathy associated with fatal cardiac arrhythmias. We identify evacetrapib as a suitable drug candidate that improves membrane trafficking and activates channels. We then use deep mutational scanning to prospectively identify all KV11.1 missense variants in a LQTS hotspot region responsive to treatment with evacetrapib. Combining high-throughput drug screens with deep mutational scanning establishes a new paradigm for mutation-specific drug discovery translatable to personalized treatment of patients with rare genetic disorders.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High throughput screens identify genotype-specific therapeutics for channelopathies.\",\"authors\":\"Christian L Egly, Alex Shen, Tri Q Do, Carlos Tellet Cabiya, Paxton A Ritschel, Suah Woo, Matthew J Ku, Brian P Delisle, Brett Kroncke, Bjorn C Knollmann\",\"doi\":\"10.1172/jci.insight.191697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic diseases such as ion-channelopathies substantially burden human health. Existing treatments are limited and not genotype specific. Here, we report a two-step high-throughput approach to rapidly identify drug candidates for repurposing as genotype-specific therapy. We first screened 1,680 medicines using a new thallium-flux trafficking assay against KV11.1 gene variants causing Long QT Syndrome (LQTS), an ion-channelopathy associated with fatal cardiac arrhythmias. We identify evacetrapib as a suitable drug candidate that improves membrane trafficking and activates channels. We then use deep mutational scanning to prospectively identify all KV11.1 missense variants in a LQTS hotspot region responsive to treatment with evacetrapib. Combining high-throughput drug screens with deep mutational scanning establishes a new paradigm for mutation-specific drug discovery translatable to personalized treatment of patients with rare genetic disorders.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.191697\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.191697","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
High throughput screens identify genotype-specific therapeutics for channelopathies.
Genetic diseases such as ion-channelopathies substantially burden human health. Existing treatments are limited and not genotype specific. Here, we report a two-step high-throughput approach to rapidly identify drug candidates for repurposing as genotype-specific therapy. We first screened 1,680 medicines using a new thallium-flux trafficking assay against KV11.1 gene variants causing Long QT Syndrome (LQTS), an ion-channelopathy associated with fatal cardiac arrhythmias. We identify evacetrapib as a suitable drug candidate that improves membrane trafficking and activates channels. We then use deep mutational scanning to prospectively identify all KV11.1 missense variants in a LQTS hotspot region responsive to treatment with evacetrapib. Combining high-throughput drug screens with deep mutational scanning establishes a new paradigm for mutation-specific drug discovery translatable to personalized treatment of patients with rare genetic disorders.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.