Junxiang Lian, Xinjian Zhang, Shanwei Shi, Xinping Li, Zhiping Wang, Hailing Pang, Tuo Wang, Wenfeng Gao, Xinpeng Liu
{"title":"整合RNA-seq、eQTL和pQTL数据的多组学孟德尔随机化显示CPXM1是骨质疏松症的潜在药物靶点。","authors":"Junxiang Lian, Xinjian Zhang, Shanwei Shi, Xinping Li, Zhiping Wang, Hailing Pang, Tuo Wang, Wenfeng Gao, Xinpeng Liu","doi":"10.1186/s41065-025-00562-w","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mineral density and increased fracture risk, continues to be a major global health concern. Traditional treatments for osteoporosis have limited efficacy and safety profiles, highlighting the need for novel therapeutic targets. This study integrates multi-omics data, including RNA-seq, expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data, through Mendelian randomization (MR) to identify potential drug targets for osteoporosis. By leveraging bidirectional two-sample MR analysis, we identified CPXM1 (Carboxypeptidase X, M14 family member 1) as a novel gene that is causally linked to osteoporosis risk. Through transcriptomic and proteomic validation, we demonstrate that CPXM1 was upregulated in aged bone tissues and osteoporotic conditions in both human and murine models. Gene set enrichment analysis (GSEA) revealed significant dysregulation of bone homeostasis pathways, including increased extracellular matrix degradation and suppression of osteoblast differentiation in aged mice. Furthermore, phenome-wide association studies (PheWAS) confirmed minimal off-target effects of CPXM1, reinforcing its potential as a therapeutic target. Finally, computational drug repurposing predicted several promising drug candidates, including Doxorubicin, 5-Fluorouracil, and 2-Methylcholine, which may target CPXM1 pathways for osteoporosis treatment. These findings highlight CPXM1 as a potential biomarker and therapeutic target, offering new avenues for osteoporosis therapy.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"200"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics Mendelian randomization integrating RNA-seq, eQTL and pQTL data revealed CPXM1 as a potential drug target for osteoporosis.\",\"authors\":\"Junxiang Lian, Xinjian Zhang, Shanwei Shi, Xinping Li, Zhiping Wang, Hailing Pang, Tuo Wang, Wenfeng Gao, Xinpeng Liu\",\"doi\":\"10.1186/s41065-025-00562-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mineral density and increased fracture risk, continues to be a major global health concern. Traditional treatments for osteoporosis have limited efficacy and safety profiles, highlighting the need for novel therapeutic targets. This study integrates multi-omics data, including RNA-seq, expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data, through Mendelian randomization (MR) to identify potential drug targets for osteoporosis. By leveraging bidirectional two-sample MR analysis, we identified CPXM1 (Carboxypeptidase X, M14 family member 1) as a novel gene that is causally linked to osteoporosis risk. Through transcriptomic and proteomic validation, we demonstrate that CPXM1 was upregulated in aged bone tissues and osteoporotic conditions in both human and murine models. Gene set enrichment analysis (GSEA) revealed significant dysregulation of bone homeostasis pathways, including increased extracellular matrix degradation and suppression of osteoblast differentiation in aged mice. Furthermore, phenome-wide association studies (PheWAS) confirmed minimal off-target effects of CPXM1, reinforcing its potential as a therapeutic target. Finally, computational drug repurposing predicted several promising drug candidates, including Doxorubicin, 5-Fluorouracil, and 2-Methylcholine, which may target CPXM1 pathways for osteoporosis treatment. These findings highlight CPXM1 as a potential biomarker and therapeutic target, offering new avenues for osteoporosis therapy.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"200\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00562-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00562-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-omics Mendelian randomization integrating RNA-seq, eQTL and pQTL data revealed CPXM1 as a potential drug target for osteoporosis.
Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mineral density and increased fracture risk, continues to be a major global health concern. Traditional treatments for osteoporosis have limited efficacy and safety profiles, highlighting the need for novel therapeutic targets. This study integrates multi-omics data, including RNA-seq, expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data, through Mendelian randomization (MR) to identify potential drug targets for osteoporosis. By leveraging bidirectional two-sample MR analysis, we identified CPXM1 (Carboxypeptidase X, M14 family member 1) as a novel gene that is causally linked to osteoporosis risk. Through transcriptomic and proteomic validation, we demonstrate that CPXM1 was upregulated in aged bone tissues and osteoporotic conditions in both human and murine models. Gene set enrichment analysis (GSEA) revealed significant dysregulation of bone homeostasis pathways, including increased extracellular matrix degradation and suppression of osteoblast differentiation in aged mice. Furthermore, phenome-wide association studies (PheWAS) confirmed minimal off-target effects of CPXM1, reinforcing its potential as a therapeutic target. Finally, computational drug repurposing predicted several promising drug candidates, including Doxorubicin, 5-Fluorouracil, and 2-Methylcholine, which may target CPXM1 pathways for osteoporosis treatment. These findings highlight CPXM1 as a potential biomarker and therapeutic target, offering new avenues for osteoporosis therapy.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.