{"title":"枯草芽孢杆菌诱导冬小麦根际微生物群结构调控及有益功能优化:一项宏基因组和表型研究。","authors":"Mykola Patyka, Renjun Wang, Anastasiia Honchar, Tetiana Patyka, Serhii Khablak","doi":"10.1093/femsec/fiaf097","DOIUrl":null,"url":null,"abstract":"<p><p>The rhizosphere microbiome critically determines plant health and productivity. This study investigated the impact of Bacillus subtilis H38 on the taxonomic and functional profiles of the winter wheat (Triticum aestivum L.) rhizosphere microbiome under typical chernozem conditions using 16S rRNA gene sequencing and shotgun metagenomics, complemented by plant phenotypic evaluation and targeted metabolite analysis. Inoculation with B. subtilis H38 significantly restructured the rhizosphere bacterial community, increasing alpha-diversity (Shannon index from 5.8 to 6.7) and showing distinct clustering in beta-diversity analysis. The relative abundance of putative plant-beneficial genera, including Bacillus, Pseudomonas, Azotobacter, and Streptomyces, was significantly elevated. Shotgun metagenomic analysis revealed enrichment of functional genes associated with nitrogen fixation, phosphorus mobilization, phytohormone biosynthesis, siderophore production, and synthesis of antimicrobial compounds. Targeted metabolomic analysis confirmed elevated levels of indole-3-acetic acid (IAA) and key siderophores. Concurrently, treated wheat plants exhibited an 18.0% increase in above-ground biomass and a 25.0% increase in root length under field conditions. These findings underscore the potential of B. subtilis to beneficially reshape the rhizosphere microbiome and its metagenome, leading to enhanced plant growth, and highlight its utility as a potent biofertilizer for improving wheat productivity. This research reinforces the potential of harnessing beneficial plant-microbe interactions to enhance agricultural productivity while minimizing dependence on synthetic agrochemicals.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of the rhizosphere microbiome structure and optimization of beneficial functions in winter wheat induced by Bacillus subtilis: a metagenomic and phenotypic study.\",\"authors\":\"Mykola Patyka, Renjun Wang, Anastasiia Honchar, Tetiana Patyka, Serhii Khablak\",\"doi\":\"10.1093/femsec/fiaf097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rhizosphere microbiome critically determines plant health and productivity. This study investigated the impact of Bacillus subtilis H38 on the taxonomic and functional profiles of the winter wheat (Triticum aestivum L.) rhizosphere microbiome under typical chernozem conditions using 16S rRNA gene sequencing and shotgun metagenomics, complemented by plant phenotypic evaluation and targeted metabolite analysis. Inoculation with B. subtilis H38 significantly restructured the rhizosphere bacterial community, increasing alpha-diversity (Shannon index from 5.8 to 6.7) and showing distinct clustering in beta-diversity analysis. The relative abundance of putative plant-beneficial genera, including Bacillus, Pseudomonas, Azotobacter, and Streptomyces, was significantly elevated. Shotgun metagenomic analysis revealed enrichment of functional genes associated with nitrogen fixation, phosphorus mobilization, phytohormone biosynthesis, siderophore production, and synthesis of antimicrobial compounds. Targeted metabolomic analysis confirmed elevated levels of indole-3-acetic acid (IAA) and key siderophores. Concurrently, treated wheat plants exhibited an 18.0% increase in above-ground biomass and a 25.0% increase in root length under field conditions. These findings underscore the potential of B. subtilis to beneficially reshape the rhizosphere microbiome and its metagenome, leading to enhanced plant growth, and highlight its utility as a potent biofertilizer for improving wheat productivity. This research reinforces the potential of harnessing beneficial plant-microbe interactions to enhance agricultural productivity while minimizing dependence on synthetic agrochemicals.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf097\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Modulation of the rhizosphere microbiome structure and optimization of beneficial functions in winter wheat induced by Bacillus subtilis: a metagenomic and phenotypic study.
The rhizosphere microbiome critically determines plant health and productivity. This study investigated the impact of Bacillus subtilis H38 on the taxonomic and functional profiles of the winter wheat (Triticum aestivum L.) rhizosphere microbiome under typical chernozem conditions using 16S rRNA gene sequencing and shotgun metagenomics, complemented by plant phenotypic evaluation and targeted metabolite analysis. Inoculation with B. subtilis H38 significantly restructured the rhizosphere bacterial community, increasing alpha-diversity (Shannon index from 5.8 to 6.7) and showing distinct clustering in beta-diversity analysis. The relative abundance of putative plant-beneficial genera, including Bacillus, Pseudomonas, Azotobacter, and Streptomyces, was significantly elevated. Shotgun metagenomic analysis revealed enrichment of functional genes associated with nitrogen fixation, phosphorus mobilization, phytohormone biosynthesis, siderophore production, and synthesis of antimicrobial compounds. Targeted metabolomic analysis confirmed elevated levels of indole-3-acetic acid (IAA) and key siderophores. Concurrently, treated wheat plants exhibited an 18.0% increase in above-ground biomass and a 25.0% increase in root length under field conditions. These findings underscore the potential of B. subtilis to beneficially reshape the rhizosphere microbiome and its metagenome, leading to enhanced plant growth, and highlight its utility as a potent biofertilizer for improving wheat productivity. This research reinforces the potential of harnessing beneficial plant-microbe interactions to enhance agricultural productivity while minimizing dependence on synthetic agrochemicals.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms