{"title":"PSA升高人群前列腺癌风险预测模型的建立与验证。","authors":"Junhui Wu, Xiaodong Jin, Jiali Li, Lingqian Zhao, Chenkai Zhao, Nengfeng Yu, Yubing Li, Jiasheng Yan, Junlong Wang, Fei Yang, Wenhao Zhang","doi":"10.3389/fonc.2025.1599266","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>To develop and validate a dynamic clinical prediction model integrating prostate-specific antigen (PSA) and peripheral blood biomarkers for distinguishing benign from malignant prostate diseases in patients with elevated PSA levels.</p><p><strong>Methods: </strong>A retrospective study was conducted of clinicopathological data and preoperative blood specimen information of patients who underwent ultrasound-guided prostate biopsy in The First Affiliated Hospital of Zhejiang Chinese Medical University due to elevated PSA between January 2018 and November 2024.Univariate analysis, Least Absolute Shrinkage and Selection Operator regression, and multifactorial logistic regression analysis were utilized to identify independent risk factors associated with benign or malignant prostate disease in patients with elevated PSA (PSA > 4.0ng/ml). The construction of a clinical prediction model was then undertaken, with the subsequent calibration and integration into a network calculator.</p><p><strong>Results: </strong>A total of 529 patients were included based on predefined inclusion and exclusion criteria, comprising 268 (50.7%) with benign pathology and 261 (49.3%) with malignancy. After analysis, independent risk factors associated with benign or malignant prostatic diseases in patients with elevated PSA levels were identified, including PSA, white blood cell, neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, eosinophil count, basophil count, and serum albumin. Utilizing these independent risk factors, a clinical prediction model for the risk of PSA-elevated prostate benign-malignant disease was constructed, yielding an area under the curve of 0.906, a predictive model specificity of 77.6%, and a sensitivity of 95%. The calibration curve and clinical decision curve indicated that the model exhibited superior calibration ability. A dynamic prediction model was formulated based on the clinical prediction model integrated into a network calculator.</p><p><strong>Conclusion: </strong>This study establishes a non-invasive prediction model integrating PSA and peripheral blood biomarkers, providing a clinically practical tool for risk stratification in patients with elevated PSA levels.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"15 ","pages":"1599266"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a prostate cancer risk prediction model for the elevated PSA population.\",\"authors\":\"Junhui Wu, Xiaodong Jin, Jiali Li, Lingqian Zhao, Chenkai Zhao, Nengfeng Yu, Yubing Li, Jiasheng Yan, Junlong Wang, Fei Yang, Wenhao Zhang\",\"doi\":\"10.3389/fonc.2025.1599266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>To develop and validate a dynamic clinical prediction model integrating prostate-specific antigen (PSA) and peripheral blood biomarkers for distinguishing benign from malignant prostate diseases in patients with elevated PSA levels.</p><p><strong>Methods: </strong>A retrospective study was conducted of clinicopathological data and preoperative blood specimen information of patients who underwent ultrasound-guided prostate biopsy in The First Affiliated Hospital of Zhejiang Chinese Medical University due to elevated PSA between January 2018 and November 2024.Univariate analysis, Least Absolute Shrinkage and Selection Operator regression, and multifactorial logistic regression analysis were utilized to identify independent risk factors associated with benign or malignant prostate disease in patients with elevated PSA (PSA > 4.0ng/ml). The construction of a clinical prediction model was then undertaken, with the subsequent calibration and integration into a network calculator.</p><p><strong>Results: </strong>A total of 529 patients were included based on predefined inclusion and exclusion criteria, comprising 268 (50.7%) with benign pathology and 261 (49.3%) with malignancy. After analysis, independent risk factors associated with benign or malignant prostatic diseases in patients with elevated PSA levels were identified, including PSA, white blood cell, neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, eosinophil count, basophil count, and serum albumin. Utilizing these independent risk factors, a clinical prediction model for the risk of PSA-elevated prostate benign-malignant disease was constructed, yielding an area under the curve of 0.906, a predictive model specificity of 77.6%, and a sensitivity of 95%. The calibration curve and clinical decision curve indicated that the model exhibited superior calibration ability. A dynamic prediction model was formulated based on the clinical prediction model integrated into a network calculator.</p><p><strong>Conclusion: </strong>This study establishes a non-invasive prediction model integrating PSA and peripheral blood biomarkers, providing a clinically practical tool for risk stratification in patients with elevated PSA levels.</p>\",\"PeriodicalId\":12482,\"journal\":{\"name\":\"Frontiers in Oncology\",\"volume\":\"15 \",\"pages\":\"1599266\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fonc.2025.1599266\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2025.1599266","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Development and validation of a prostate cancer risk prediction model for the elevated PSA population.
Introduction: To develop and validate a dynamic clinical prediction model integrating prostate-specific antigen (PSA) and peripheral blood biomarkers for distinguishing benign from malignant prostate diseases in patients with elevated PSA levels.
Methods: A retrospective study was conducted of clinicopathological data and preoperative blood specimen information of patients who underwent ultrasound-guided prostate biopsy in The First Affiliated Hospital of Zhejiang Chinese Medical University due to elevated PSA between January 2018 and November 2024.Univariate analysis, Least Absolute Shrinkage and Selection Operator regression, and multifactorial logistic regression analysis were utilized to identify independent risk factors associated with benign or malignant prostate disease in patients with elevated PSA (PSA > 4.0ng/ml). The construction of a clinical prediction model was then undertaken, with the subsequent calibration and integration into a network calculator.
Results: A total of 529 patients were included based on predefined inclusion and exclusion criteria, comprising 268 (50.7%) with benign pathology and 261 (49.3%) with malignancy. After analysis, independent risk factors associated with benign or malignant prostatic diseases in patients with elevated PSA levels were identified, including PSA, white blood cell, neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, eosinophil count, basophil count, and serum albumin. Utilizing these independent risk factors, a clinical prediction model for the risk of PSA-elevated prostate benign-malignant disease was constructed, yielding an area under the curve of 0.906, a predictive model specificity of 77.6%, and a sensitivity of 95%. The calibration curve and clinical decision curve indicated that the model exhibited superior calibration ability. A dynamic prediction model was formulated based on the clinical prediction model integrated into a network calculator.
Conclusion: This study establishes a non-invasive prediction model integrating PSA and peripheral blood biomarkers, providing a clinically practical tool for risk stratification in patients with elevated PSA levels.
期刊介绍:
Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.