xIV-LDDMM基于图像可变技术的工具包,用于跨尺度映射3D图像和空间组学。

IF 5.1 1区 生物学 Q1 BIOLOGY
Kaitlin M Stouffer, Xiaoyin Chen, Hongkui Zeng, Benjamin Charlier, Laurent Younes, Alain Trouvé, Michael I Miller
{"title":"xIV-LDDMM基于图像可变技术的工具包,用于跨尺度映射3D图像和空间组学。","authors":"Kaitlin M Stouffer, Xiaoyin Chen, Hongkui Zeng, Benjamin Charlier, Laurent Younes, Alain Trouvé, Michael I Miller","doi":"10.1038/s42003-025-08800-7","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in imaging and molecular techniques enable the collection of subcellular-scale data. Diversity in measured features, resolution, and physical scope of capture across technologies and experimental protocols pose numerous challenges to integrating data with reference coordinate systems and across scales. This paper describes a collection of technologies that we have developed for mapping data across scales and modalities, such as genes to tissues, specifically in a 3D setting. Our collection of technologies include (i) an explicit censored data representation for the partial matching problem mapping whole brains to subsampled subvolumes, (ii) a multi, scale-space optimization technology for generating resampling grids optimized to represent spatial geometry at fixed complexities, and (iii) mutual-information based functional feature selection. We integrate these technologies with our cross-modality mapping algorithm through the use of image-varifold measure norms to represent universally data across scales and imaging modalities. Collectively, these methods afford efficient representations of peta-scale imagery providing the algorithms for mapping from the nano to millimeter scales, which we term cross-modality image-varifold LDDMM (xIV-LDDMM).</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1401"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484866/pdf/","citationCount":"0","resultStr":"{\"title\":\"The xIV-LDDMM toolkit of image-varifold based technologies for mapping 3D images and spatial-omics across scales.\",\"authors\":\"Kaitlin M Stouffer, Xiaoyin Chen, Hongkui Zeng, Benjamin Charlier, Laurent Younes, Alain Trouvé, Michael I Miller\",\"doi\":\"10.1038/s42003-025-08800-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in imaging and molecular techniques enable the collection of subcellular-scale data. Diversity in measured features, resolution, and physical scope of capture across technologies and experimental protocols pose numerous challenges to integrating data with reference coordinate systems and across scales. This paper describes a collection of technologies that we have developed for mapping data across scales and modalities, such as genes to tissues, specifically in a 3D setting. Our collection of technologies include (i) an explicit censored data representation for the partial matching problem mapping whole brains to subsampled subvolumes, (ii) a multi, scale-space optimization technology for generating resampling grids optimized to represent spatial geometry at fixed complexities, and (iii) mutual-information based functional feature selection. We integrate these technologies with our cross-modality mapping algorithm through the use of image-varifold measure norms to represent universally data across scales and imaging modalities. Collectively, these methods afford efficient representations of peta-scale imagery providing the algorithms for mapping from the nano to millimeter scales, which we term cross-modality image-varifold LDDMM (xIV-LDDMM).</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1401\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08800-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08800-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

成像和分子技术的进步使亚细胞尺度数据的收集成为可能。不同技术和实验方案的测量特征、分辨率和物理捕获范围的多样性,给与参考坐标系和跨尺度集成数据带来了许多挑战。本文描述了我们开发的一系列技术,用于跨尺度和模式的数据映射,例如基因到组织,特别是在3D环境中。我们的技术集合包括(i)用于将整个大脑映射到子样本的部分匹配问题的明确审查数据表示,(ii)用于生成重采样网格的多尺度空间优化技术,该网格优化以表示固定复杂性的空间几何,以及(iii)基于互信息的功能特征选择。我们通过使用图像可变测量规范将这些技术与我们的跨模态映射算法集成在一起,以表示跨尺度和成像模式的通用数据。总的来说,这些方法提供了从纳米尺度到毫米尺度的映射算法,我们称之为跨模态图像可变LDDMM (xIV-LDDMM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The xIV-LDDMM toolkit of image-varifold based technologies for mapping 3D images and spatial-omics across scales.

Advancements in imaging and molecular techniques enable the collection of subcellular-scale data. Diversity in measured features, resolution, and physical scope of capture across technologies and experimental protocols pose numerous challenges to integrating data with reference coordinate systems and across scales. This paper describes a collection of technologies that we have developed for mapping data across scales and modalities, such as genes to tissues, specifically in a 3D setting. Our collection of technologies include (i) an explicit censored data representation for the partial matching problem mapping whole brains to subsampled subvolumes, (ii) a multi, scale-space optimization technology for generating resampling grids optimized to represent spatial geometry at fixed complexities, and (iii) mutual-information based functional feature selection. We integrate these technologies with our cross-modality mapping algorithm through the use of image-varifold measure norms to represent universally data across scales and imaging modalities. Collectively, these methods afford efficient representations of peta-scale imagery providing the algorithms for mapping from the nano to millimeter scales, which we term cross-modality image-varifold LDDMM (xIV-LDDMM).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信