{"title":"pubesine作为抗万古霉素耐药肠球菌的新型抗菌剂:生长抑制、抗生素协同作用和抗生物膜活性。","authors":"Raya Soltane","doi":"10.2174/0113892010399006250923063945","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rise of Vancomycin-Resistant Enterococcus (VRE) has become a major public health concern due to its resistance to conventional antibiotics and ability to form biofilms. The urgent need for novel therapeutic strategies has led to increased interest in natural compounds with antimicrobial potential. Pubescine (PBN), a steroidal alkaloid isolated from Holarrhena pubescens, has demonstrated antimicrobial properties, but its efficacy against VRE remains unexplored.</p><p><strong>Methods: </strong>PBN was isolated and purified from Holarrhena pubescens using chromatographic techniques and identified through spectroscopic analysis. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined via broth microdilution assays. Time-kill assays assessed the bacteriostatic or bactericidal nature of PBN. Resistance development was evaluated through prolonged bacterial exposure to subinhibitory concentrations. Synergistic interactions with vancomycin and cefoxitin were analyzed using checkerboard microdilution assays. Biofilm formation and eradication were assessed via crystal violet staining and fluorescence imaging. Metabolic activity and oxidative stress induction were measured using the Alamar Blue assay and Reactive Oxygen Species (ROS) quantification, respectively.</p><p><strong>Results: </strong>PBN exhibited concentration-dependent inhibition of VRE growth, primarily exerting a bacteriostatic effect without promoting the development of resistance. Checkerboard assays revealed strong synergy between PBN and vancomycin (FICI = 0.1875) and cefoxitin (FICI = 0.3125), suggesting that PBN enhances the efficacy of these antibiotics.</p><p><strong>Discussion: </strong>PBN significantly reduced biofilm formation and facilitated biofilm disruption at concentrations as low as 4 μg/mL. Metabolic assays demonstrated that PBN suppresses bacterial metabolic activity, while ROS quantification indicated a substantial increase in oxidative stress, suggesting a multi-targeted mechanism of action.</p><p><strong>Conclusion: </strong>These findings establish PBN as a promising antimicrobial agent with potent activity against vancomycin-resistant Enterococcus faecalis. Its ability to enhance antibiotic efficacy, inhibit biofilm formation, and induce oxidative stress underscores its potential as a novel therapeutic strategy against multidrug-resistant infections. Further in vivo studies and pharmacokinetic evaluations are warranted to assess its clinical applicability.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pubescine as a Novel Antibacterial Agent Against Vancomycin-Resistant Enterococcus: Growth Inhibition, Antibiotic Synergy, and Anti-Biofilm Activity.\",\"authors\":\"Raya Soltane\",\"doi\":\"10.2174/0113892010399006250923063945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The rise of Vancomycin-Resistant Enterococcus (VRE) has become a major public health concern due to its resistance to conventional antibiotics and ability to form biofilms. The urgent need for novel therapeutic strategies has led to increased interest in natural compounds with antimicrobial potential. Pubescine (PBN), a steroidal alkaloid isolated from Holarrhena pubescens, has demonstrated antimicrobial properties, but its efficacy against VRE remains unexplored.</p><p><strong>Methods: </strong>PBN was isolated and purified from Holarrhena pubescens using chromatographic techniques and identified through spectroscopic analysis. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined via broth microdilution assays. Time-kill assays assessed the bacteriostatic or bactericidal nature of PBN. Resistance development was evaluated through prolonged bacterial exposure to subinhibitory concentrations. Synergistic interactions with vancomycin and cefoxitin were analyzed using checkerboard microdilution assays. Biofilm formation and eradication were assessed via crystal violet staining and fluorescence imaging. Metabolic activity and oxidative stress induction were measured using the Alamar Blue assay and Reactive Oxygen Species (ROS) quantification, respectively.</p><p><strong>Results: </strong>PBN exhibited concentration-dependent inhibition of VRE growth, primarily exerting a bacteriostatic effect without promoting the development of resistance. Checkerboard assays revealed strong synergy between PBN and vancomycin (FICI = 0.1875) and cefoxitin (FICI = 0.3125), suggesting that PBN enhances the efficacy of these antibiotics.</p><p><strong>Discussion: </strong>PBN significantly reduced biofilm formation and facilitated biofilm disruption at concentrations as low as 4 μg/mL. Metabolic assays demonstrated that PBN suppresses bacterial metabolic activity, while ROS quantification indicated a substantial increase in oxidative stress, suggesting a multi-targeted mechanism of action.</p><p><strong>Conclusion: </strong>These findings establish PBN as a promising antimicrobial agent with potent activity against vancomycin-resistant Enterococcus faecalis. Its ability to enhance antibiotic efficacy, inhibit biofilm formation, and induce oxidative stress underscores its potential as a novel therapeutic strategy against multidrug-resistant infections. Further in vivo studies and pharmacokinetic evaluations are warranted to assess its clinical applicability.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010399006250923063945\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010399006250923063945","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pubescine as a Novel Antibacterial Agent Against Vancomycin-Resistant Enterococcus: Growth Inhibition, Antibiotic Synergy, and Anti-Biofilm Activity.
Introduction: The rise of Vancomycin-Resistant Enterococcus (VRE) has become a major public health concern due to its resistance to conventional antibiotics and ability to form biofilms. The urgent need for novel therapeutic strategies has led to increased interest in natural compounds with antimicrobial potential. Pubescine (PBN), a steroidal alkaloid isolated from Holarrhena pubescens, has demonstrated antimicrobial properties, but its efficacy against VRE remains unexplored.
Methods: PBN was isolated and purified from Holarrhena pubescens using chromatographic techniques and identified through spectroscopic analysis. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined via broth microdilution assays. Time-kill assays assessed the bacteriostatic or bactericidal nature of PBN. Resistance development was evaluated through prolonged bacterial exposure to subinhibitory concentrations. Synergistic interactions with vancomycin and cefoxitin were analyzed using checkerboard microdilution assays. Biofilm formation and eradication were assessed via crystal violet staining and fluorescence imaging. Metabolic activity and oxidative stress induction were measured using the Alamar Blue assay and Reactive Oxygen Species (ROS) quantification, respectively.
Results: PBN exhibited concentration-dependent inhibition of VRE growth, primarily exerting a bacteriostatic effect without promoting the development of resistance. Checkerboard assays revealed strong synergy between PBN and vancomycin (FICI = 0.1875) and cefoxitin (FICI = 0.3125), suggesting that PBN enhances the efficacy of these antibiotics.
Discussion: PBN significantly reduced biofilm formation and facilitated biofilm disruption at concentrations as low as 4 μg/mL. Metabolic assays demonstrated that PBN suppresses bacterial metabolic activity, while ROS quantification indicated a substantial increase in oxidative stress, suggesting a multi-targeted mechanism of action.
Conclusion: These findings establish PBN as a promising antimicrobial agent with potent activity against vancomycin-resistant Enterococcus faecalis. Its ability to enhance antibiotic efficacy, inhibit biofilm formation, and induce oxidative stress underscores its potential as a novel therapeutic strategy against multidrug-resistant infections. Further in vivo studies and pharmacokinetic evaluations are warranted to assess its clinical applicability.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.