Minle Tian, Xiaolei Han, Ming Mao, Xiaomeng Li, Yi Dong, Jiahao Ding, Qinghua Zhang, Shi Tang, Xiaojuan Han, Lin Song, Tingting Hou, Lin Cong, Yifeng Du, Chengxuan Qiu, Yongxiang Wang
{"title":"表征与加速度计测量的久坐行为相关的灰质萎缩模式:一项基于人群的研究。","authors":"Minle Tian, Xiaolei Han, Ming Mao, Xiaomeng Li, Yi Dong, Jiahao Ding, Qinghua Zhang, Shi Tang, Xiaojuan Han, Lin Song, Tingting Hou, Lin Cong, Yifeng Du, Chengxuan Qiu, Yongxiang Wang","doi":"10.1007/s11682-025-01054-1","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence has linked self-reported sedentary behaviors with dementia and cognitive impairment; however, the underlying mechanisms remain poorly understood. We investigated the associations of accelerometer-measured sedentary behavior patterns with gray matter atrophy patterns in rural-dwelling older adults, while taking into account the manner in which sedentary time is accrued (in short or long bouts). This community-based study involved 911 dementia-free older adults (age ≥ 60 years, 59% women) who participated in both ActiGraph and brain MRI substudies within MIND-China (2018-2020). Sedentary behavior parameters (total sedentary time, mean sedentary bout duration, and sedentary breaks) were recorded with accelerometers. Regional gray matter volumes (GMV) were measured using voxel-based morphometry (VBM) methods. Data were analyzed using the general linear regression models, restricted cubic spline curves, and VBM analysis. There was an inverted U-shaped association between daily sedentary time and GMV in temporal, cingulate, and medial temporal cortex, while longer mean sedentary bout duration was linearly related to decreased GMV in total, frontal, temporal, insula, cingulate, and medial temporal cortex. Greater daily time spent in light or moderate-to-vigorous physical activity (LPA and MVPA) was correlated with larger insula GMV. The VBM analysis suggested that prolonged daily total sedentary time and mean sedentary bout duration were significantly associated with smaller GMV in extensive brain regions, especially in thalamus and insula. In conclusion, gray matter atrophy associated with sedentary behavior in older adults is characterized by reduced GMV in global, frontal, temporal, medial temporal, and cingulate cortex, especially in the insula and thalamus regions.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Gray matter atrophy patterns associated with accelerometer-measured sedentary behavior: a population-based study.\",\"authors\":\"Minle Tian, Xiaolei Han, Ming Mao, Xiaomeng Li, Yi Dong, Jiahao Ding, Qinghua Zhang, Shi Tang, Xiaojuan Han, Lin Song, Tingting Hou, Lin Cong, Yifeng Du, Chengxuan Qiu, Yongxiang Wang\",\"doi\":\"10.1007/s11682-025-01054-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence has linked self-reported sedentary behaviors with dementia and cognitive impairment; however, the underlying mechanisms remain poorly understood. We investigated the associations of accelerometer-measured sedentary behavior patterns with gray matter atrophy patterns in rural-dwelling older adults, while taking into account the manner in which sedentary time is accrued (in short or long bouts). This community-based study involved 911 dementia-free older adults (age ≥ 60 years, 59% women) who participated in both ActiGraph and brain MRI substudies within MIND-China (2018-2020). Sedentary behavior parameters (total sedentary time, mean sedentary bout duration, and sedentary breaks) were recorded with accelerometers. Regional gray matter volumes (GMV) were measured using voxel-based morphometry (VBM) methods. Data were analyzed using the general linear regression models, restricted cubic spline curves, and VBM analysis. There was an inverted U-shaped association between daily sedentary time and GMV in temporal, cingulate, and medial temporal cortex, while longer mean sedentary bout duration was linearly related to decreased GMV in total, frontal, temporal, insula, cingulate, and medial temporal cortex. Greater daily time spent in light or moderate-to-vigorous physical activity (LPA and MVPA) was correlated with larger insula GMV. The VBM analysis suggested that prolonged daily total sedentary time and mean sedentary bout duration were significantly associated with smaller GMV in extensive brain regions, especially in thalamus and insula. In conclusion, gray matter atrophy associated with sedentary behavior in older adults is characterized by reduced GMV in global, frontal, temporal, medial temporal, and cingulate cortex, especially in the insula and thalamus regions.</p>\",\"PeriodicalId\":9192,\"journal\":{\"name\":\"Brain Imaging and Behavior\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Imaging and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11682-025-01054-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-025-01054-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Characterizing Gray matter atrophy patterns associated with accelerometer-measured sedentary behavior: a population-based study.
Evidence has linked self-reported sedentary behaviors with dementia and cognitive impairment; however, the underlying mechanisms remain poorly understood. We investigated the associations of accelerometer-measured sedentary behavior patterns with gray matter atrophy patterns in rural-dwelling older adults, while taking into account the manner in which sedentary time is accrued (in short or long bouts). This community-based study involved 911 dementia-free older adults (age ≥ 60 years, 59% women) who participated in both ActiGraph and brain MRI substudies within MIND-China (2018-2020). Sedentary behavior parameters (total sedentary time, mean sedentary bout duration, and sedentary breaks) were recorded with accelerometers. Regional gray matter volumes (GMV) were measured using voxel-based morphometry (VBM) methods. Data were analyzed using the general linear regression models, restricted cubic spline curves, and VBM analysis. There was an inverted U-shaped association between daily sedentary time and GMV in temporal, cingulate, and medial temporal cortex, while longer mean sedentary bout duration was linearly related to decreased GMV in total, frontal, temporal, insula, cingulate, and medial temporal cortex. Greater daily time spent in light or moderate-to-vigorous physical activity (LPA and MVPA) was correlated with larger insula GMV. The VBM analysis suggested that prolonged daily total sedentary time and mean sedentary bout duration were significantly associated with smaller GMV in extensive brain regions, especially in thalamus and insula. In conclusion, gray matter atrophy associated with sedentary behavior in older adults is characterized by reduced GMV in global, frontal, temporal, medial temporal, and cingulate cortex, especially in the insula and thalamus regions.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.