活性金属氧化物包覆Pt/Al2O3及其在丙烷催化氧化中的应用

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Geun-Ho Han, Kunmo Koo, Selim Alayoglu, Siobhan W Brown, Justin M Notestein
{"title":"活性金属氧化物包覆Pt/Al2O3及其在丙烷催化氧化中的应用","authors":"Geun-Ho Han, Kunmo Koo, Selim Alayoglu, Siobhan W Brown, Justin M Notestein","doi":"10.1002/smtd.202501377","DOIUrl":null,"url":null,"abstract":"<p><p>Inverse-structured metal-metal oxide materials-where the oxides are located on top of a different metal-can provide unique chemical properties. Here, a few layers of reactive metal oxides, including In<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub>, or TiO<sub>2</sub>, are overcoated on Al<sub>2</sub>O<sub>3</sub>-supported Pt nanoparticles using atomic layer deposition (ALD). In contrast to prior work focusing on stabilizing metal surfaces or new mixed-valence nanoparticles, here the goal is to create new reactive surfaces and interfaces. The overcoating altered the Pt nanoparticle accessibility as measured by STEM, CO chemisorption, and CO DRIFTS. The reactivity of the overcoated materials is interrogated with temperature-programmed reduction in H<sub>2</sub>, in propane, and in the catalytic reaction of propane with O<sub>2</sub>. Strong interactions between In<sub>2</sub>O<sub>3</sub> and the Pt nanoparticles are evident from changes in Pt accessibility, In<sub>2</sub>O<sub>3</sub> reducibility, and tandem catalytic reactivity. MoO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> overcoats also showed significant changes to Pt accessibility and the reducibility of the oxide in H<sub>2</sub>; Bi<sub>2</sub>O<sub>3</sub> addition led to complete propane combustion. This study establishes ALD methods for reactive oxides on high surface area materials suitable for applications such as heterogeneous catalysis, and it illustrates the wide range of useful physiochemical modifications resulting from the unique oxide-metal interfaces generated.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01377"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pt/Al<sub>2</sub>O<sub>3</sub> Overcoated with Reactive Metal Oxides and Their Application to Catalytic Oxidation of Propane.\",\"authors\":\"Geun-Ho Han, Kunmo Koo, Selim Alayoglu, Siobhan W Brown, Justin M Notestein\",\"doi\":\"10.1002/smtd.202501377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inverse-structured metal-metal oxide materials-where the oxides are located on top of a different metal-can provide unique chemical properties. Here, a few layers of reactive metal oxides, including In<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub>, or TiO<sub>2</sub>, are overcoated on Al<sub>2</sub>O<sub>3</sub>-supported Pt nanoparticles using atomic layer deposition (ALD). In contrast to prior work focusing on stabilizing metal surfaces or new mixed-valence nanoparticles, here the goal is to create new reactive surfaces and interfaces. The overcoating altered the Pt nanoparticle accessibility as measured by STEM, CO chemisorption, and CO DRIFTS. The reactivity of the overcoated materials is interrogated with temperature-programmed reduction in H<sub>2</sub>, in propane, and in the catalytic reaction of propane with O<sub>2</sub>. Strong interactions between In<sub>2</sub>O<sub>3</sub> and the Pt nanoparticles are evident from changes in Pt accessibility, In<sub>2</sub>O<sub>3</sub> reducibility, and tandem catalytic reactivity. MoO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> overcoats also showed significant changes to Pt accessibility and the reducibility of the oxide in H<sub>2</sub>; Bi<sub>2</sub>O<sub>3</sub> addition led to complete propane combustion. This study establishes ALD methods for reactive oxides on high surface area materials suitable for applications such as heterogeneous catalysis, and it illustrates the wide range of useful physiochemical modifications resulting from the unique oxide-metal interfaces generated.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01377\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501377\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501377","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

反结构金属-金属氧化物材料——氧化物位于不同金属的顶部——可以提供独特的化学性质。在这里,使用原子层沉积(ALD)将几层活性金属氧化物,包括In2O3, MoO3, Bi2O3或TiO2覆盖在al2o3支撑的Pt纳米颗粒上。与之前专注于稳定金属表面或新的混合价纳米颗粒的工作相反,这里的目标是创造新的反应表面和界面。通过STEM、CO化学吸附和CO drift测量,覆盖层改变了Pt纳米颗粒的可及性。在H2、丙烷和丙烷与O2的催化反应中,通过温度程序化还原来考察包覆材料的反应性。从Pt可及性、In2O3还原性和串联催化活性的变化可以看出In2O3与Pt纳米颗粒之间的强相互作用。MoO3和Bi2O3涂层对Pt的接近性和H2中氧化物的还原性也有显著的影响;Bi2O3的加入导致丙烷完全燃烧。本研究建立了适用于多相催化等应用的高表面积材料上的活性氧化物的ALD方法,并说明了由生成的独特氧化物-金属界面产生的广泛有用的物理化学修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pt/Al2O3 Overcoated with Reactive Metal Oxides and Their Application to Catalytic Oxidation of Propane.

Inverse-structured metal-metal oxide materials-where the oxides are located on top of a different metal-can provide unique chemical properties. Here, a few layers of reactive metal oxides, including In2O3, MoO3, Bi2O3, or TiO2, are overcoated on Al2O3-supported Pt nanoparticles using atomic layer deposition (ALD). In contrast to prior work focusing on stabilizing metal surfaces or new mixed-valence nanoparticles, here the goal is to create new reactive surfaces and interfaces. The overcoating altered the Pt nanoparticle accessibility as measured by STEM, CO chemisorption, and CO DRIFTS. The reactivity of the overcoated materials is interrogated with temperature-programmed reduction in H2, in propane, and in the catalytic reaction of propane with O2. Strong interactions between In2O3 and the Pt nanoparticles are evident from changes in Pt accessibility, In2O3 reducibility, and tandem catalytic reactivity. MoO3 and Bi2O3 overcoats also showed significant changes to Pt accessibility and the reducibility of the oxide in H2; Bi2O3 addition led to complete propane combustion. This study establishes ALD methods for reactive oxides on high surface area materials suitable for applications such as heterogeneous catalysis, and it illustrates the wide range of useful physiochemical modifications resulting from the unique oxide-metal interfaces generated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信