机器学习辅助的聚苯乙烯多目标粗粒化策略。

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Jiaxian Zhang, Hongxia Guo
{"title":"机器学习辅助的聚苯乙烯多目标粗粒化策略。","authors":"Jiaxian Zhang, Hongxia Guo","doi":"10.1002/marc.202500558","DOIUrl":null,"url":null,"abstract":"<p><p>Coarse-grained (CG) molecular dynamics offers a powerful means to bridge atomistic simulations and macroscopic experiments, but constructing CG models that simultaneously preserve structural, thermodynamic, and dynamical consistency remains challenging. Here, we present a machine learning-assisted, multi-objective parameterization strategy for atactic polystyrene (PS) based on a 2:1 mapping scheme. By integrating Support Vector Regression (SVR) and Particle Swarm Optimization (PSO), we systematically optimize Lennard-Jones parameters to reproduce atomistic-level radial distribution functions, density, cohesive energy density, and self-diffusion coefficients at 600 <math><semantics><mi>K</mi> <annotation>$K$</annotation></semantics> </math> and 1 <math> <semantics><mrow><mi>a</mi> <mi>t</mi> <mi>m</mi></mrow> <annotation>$atm$</annotation></semantics> </math> . Notably, the inclusion of the diffusion coefficient as an optimization target enables the construction of a dynamically consistent CG model. The resulting CG force field achieves remarkable agreement with all-atom (AA) simulations across multiple observables, establishing a robust framework for predictive polymer modeling. This methodology provides a framework that could be extended to materials discovery and rational polymer design in future studies.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00558"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Multi-Target Coarse-Graining Strategy for Polystyrene.\",\"authors\":\"Jiaxian Zhang, Hongxia Guo\",\"doi\":\"10.1002/marc.202500558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coarse-grained (CG) molecular dynamics offers a powerful means to bridge atomistic simulations and macroscopic experiments, but constructing CG models that simultaneously preserve structural, thermodynamic, and dynamical consistency remains challenging. Here, we present a machine learning-assisted, multi-objective parameterization strategy for atactic polystyrene (PS) based on a 2:1 mapping scheme. By integrating Support Vector Regression (SVR) and Particle Swarm Optimization (PSO), we systematically optimize Lennard-Jones parameters to reproduce atomistic-level radial distribution functions, density, cohesive energy density, and self-diffusion coefficients at 600 <math><semantics><mi>K</mi> <annotation>$K$</annotation></semantics> </math> and 1 <math> <semantics><mrow><mi>a</mi> <mi>t</mi> <mi>m</mi></mrow> <annotation>$atm$</annotation></semantics> </math> . Notably, the inclusion of the diffusion coefficient as an optimization target enables the construction of a dynamically consistent CG model. The resulting CG force field achieves remarkable agreement with all-atom (AA) simulations across multiple observables, establishing a robust framework for predictive polymer modeling. This methodology provides a framework that could be extended to materials discovery and rational polymer design in future studies.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e00558\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202500558\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500558","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

粗粒度(CG)分子动力学为原子模拟和宏观实验提供了一个强大的桥梁,但是构建同时保持结构、热力学和动力学一致性的CG模型仍然具有挑战性。在这里,我们提出了一种基于2:1映射方案的机器学习辅助的无规聚苯乙烯(PS)多目标参数化策略。通过整合支持向量回归(SVR)和粒子群优化(PSO),系统优化Lennard-Jones参数,重现600 K$ K$和1 atm$ atm$时原子级径向分布函数、密度、内聚能密度和自扩散系数。值得注意的是,将扩散系数作为优化目标可以构建动态一致的CG模型。由此产生的CG力场与跨多个观测值的全原子(AA)模拟结果非常一致,为预测聚合物建模建立了一个强大的框架。该方法为今后的材料发现和合理的聚合物设计提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Assisted Multi-Target Coarse-Graining Strategy for Polystyrene.

Coarse-grained (CG) molecular dynamics offers a powerful means to bridge atomistic simulations and macroscopic experiments, but constructing CG models that simultaneously preserve structural, thermodynamic, and dynamical consistency remains challenging. Here, we present a machine learning-assisted, multi-objective parameterization strategy for atactic polystyrene (PS) based on a 2:1 mapping scheme. By integrating Support Vector Regression (SVR) and Particle Swarm Optimization (PSO), we systematically optimize Lennard-Jones parameters to reproduce atomistic-level radial distribution functions, density, cohesive energy density, and self-diffusion coefficients at 600 K $K$ and 1 a t m $atm$ . Notably, the inclusion of the diffusion coefficient as an optimization target enables the construction of a dynamically consistent CG model. The resulting CG force field achieves remarkable agreement with all-atom (AA) simulations across multiple observables, establishing a robust framework for predictive polymer modeling. This methodology provides a framework that could be extended to materials discovery and rational polymer design in future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信