基于CeO2:Eu3+纳米酶扩增的电化学发光-比色双模生物传感器检测葡萄糖。

IF 10.5 1区 生物学 Q1 BIOPHYSICS
Mingxia Wang, Minggang Wei, Weiling Su, Liying Liu, Yanhong Li, Lijun Zhao, Feng Luan, Xuming Zhuang, Chunyuan Tian
{"title":"基于CeO2:Eu3+纳米酶扩增的电化学发光-比色双模生物传感器检测葡萄糖。","authors":"Mingxia Wang,&nbsp;Minggang Wei,&nbsp;Weiling Su,&nbsp;Liying Liu,&nbsp;Yanhong Li,&nbsp;Lijun Zhao,&nbsp;Feng Luan,&nbsp;Xuming Zhuang,&nbsp;Chunyuan Tian","doi":"10.1016/j.bios.2025.118027","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional glucose (Glu) sensing platforms predominantly rely on single-signal readouts, a strategy inherently vulnerable to matrix interference and this limitation often leads to inaccurate quantification when analyzing complex biological or environmental samples. To address this challenge, we herein developed an electrochemiluminescence (ECL)-colorimetric dual-mode detection strategy for Glu, based on CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials, with the aim of enhancing the accuracy of Glu quantification. The CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials exhibited excellent ECL performance in an ECL system using potassium persulfate (K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) as the coreactant. Notably, their ECL intensity could be effectively quenched by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and the quenching efficiency showed a linear correlation with H<sub>2</sub>O<sub>2</sub> concentration, this relationship enabled the quantitative detection of H<sub>2</sub>O<sub>2</sub>. Furthermore, the peroxidase-mimetic activity of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials further enhanced the ECL quenching efficiency, thereby improving the sensitivity of H<sub>2</sub>O<sub>2</sub> detection. Concurrently, the CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials displayed remarkable peroxidase-mimetic activity in the chromogenic reaction between 3,3′,5,5′-tetramethylbenzidine (TMB) and H<sub>2</sub>O<sub>2</sub>, inducing a distinct color transition from colorless to blue that could be easily visualized and recorded using a smartphone. Leveraging these properties of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials, combined with the reaction mechanism wherein Glu generates H<sub>2</sub>O<sub>2</sub> under the catalysis of Glu oxidase (GOx), we established a dual-mode detection method for Glu. Under optimized experimental conditions, this method achieved highly sensitive and selective Glu detection: the limit of detection (LOD) was as low as 0.033 nM for the ECL mode and 1.46 μM for the colorimetric mode (S/N = 3). This work integrates the unique dual functionalities of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials to realize sensitive dual-mode Glu detection, providing new insights for the innovative design of dual-mode sensors and exhibiting significant potential in clinical diabetes monitoring.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"291 ","pages":"Article 118027"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemiluminescence-colorimetric dual-mode biosensor based on CeO2:Eu3+ nanozyme amplification for the detection of glucose\",\"authors\":\"Mingxia Wang,&nbsp;Minggang Wei,&nbsp;Weiling Su,&nbsp;Liying Liu,&nbsp;Yanhong Li,&nbsp;Lijun Zhao,&nbsp;Feng Luan,&nbsp;Xuming Zhuang,&nbsp;Chunyuan Tian\",\"doi\":\"10.1016/j.bios.2025.118027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional glucose (Glu) sensing platforms predominantly rely on single-signal readouts, a strategy inherently vulnerable to matrix interference and this limitation often leads to inaccurate quantification when analyzing complex biological or environmental samples. To address this challenge, we herein developed an electrochemiluminescence (ECL)-colorimetric dual-mode detection strategy for Glu, based on CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials, with the aim of enhancing the accuracy of Glu quantification. The CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials exhibited excellent ECL performance in an ECL system using potassium persulfate (K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) as the coreactant. Notably, their ECL intensity could be effectively quenched by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and the quenching efficiency showed a linear correlation with H<sub>2</sub>O<sub>2</sub> concentration, this relationship enabled the quantitative detection of H<sub>2</sub>O<sub>2</sub>. Furthermore, the peroxidase-mimetic activity of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials further enhanced the ECL quenching efficiency, thereby improving the sensitivity of H<sub>2</sub>O<sub>2</sub> detection. Concurrently, the CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials displayed remarkable peroxidase-mimetic activity in the chromogenic reaction between 3,3′,5,5′-tetramethylbenzidine (TMB) and H<sub>2</sub>O<sub>2</sub>, inducing a distinct color transition from colorless to blue that could be easily visualized and recorded using a smartphone. Leveraging these properties of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials, combined with the reaction mechanism wherein Glu generates H<sub>2</sub>O<sub>2</sub> under the catalysis of Glu oxidase (GOx), we established a dual-mode detection method for Glu. Under optimized experimental conditions, this method achieved highly sensitive and selective Glu detection: the limit of detection (LOD) was as low as 0.033 nM for the ECL mode and 1.46 μM for the colorimetric mode (S/N = 3). This work integrates the unique dual functionalities of CeO<sub>2</sub>:Eu<sup>3+</sup> nanomaterials to realize sensitive dual-mode Glu detection, providing new insights for the innovative design of dual-mode sensors and exhibiting significant potential in clinical diabetes monitoring.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"291 \",\"pages\":\"Article 118027\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325009030\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325009030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

传统的葡萄糖(Glu)传感平台主要依赖于单信号读出,这是一种固有的易受基质干扰的策略,这种限制往往导致在分析复杂的生物或环境样品时定量不准确。为了解决这一挑战,我们开发了一种基于CeO2:Eu3+纳米材料的电化学发光(ECL)-比色双模式Glu检测策略,旨在提高Glu定量的准确性。CeO2:Eu3+纳米材料在以过硫酸钾(K2S2O8)为共聚物的ECL体系中表现出优异的ECL性能。值得注意的是,它们的ECL强度可以被过氧化氢(H2O2)有效猝灭,猝灭效率与H2O2浓度呈线性相关,这一关系使得H2O2的定量检测成为可能。此外,CeO2:Eu3+纳米材料的过氧化物酶模拟活性进一步增强了ECL猝灭效率,从而提高了H2O2检测的灵敏度。同时,CeO2:Eu3+纳米材料在3,3',5,5'-四甲基联苯胺(TMB)与H2O2的显色反应中表现出了显著的模拟过氧化物酶活性,诱导了从无色到蓝色的明显颜色转变,可以很容易地用智能手机进行可视化和记录。利用CeO2:Eu3+纳米材料的这些特性,结合Glu氧化酶(GOx)催化下Glu生成H2O2的反应机理,我们建立了Glu的双模检测方法。在优化的实验条件下,该方法实现了高灵敏度和选择性的Glu检测,ECL模式的检出限(LOD)低至0.033 nM,比色模式的检出限(LOD)低至1.46 μM (S/N = 3)。本研究整合了CeO2:Eu3+纳米材料独特的双功能,实现了灵敏的双模Glu检测,为双模传感器的创新设计提供了新的见解,在临床糖尿病监测中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemiluminescence-colorimetric dual-mode biosensor based on CeO2:Eu3+ nanozyme amplification for the detection of glucose
Conventional glucose (Glu) sensing platforms predominantly rely on single-signal readouts, a strategy inherently vulnerable to matrix interference and this limitation often leads to inaccurate quantification when analyzing complex biological or environmental samples. To address this challenge, we herein developed an electrochemiluminescence (ECL)-colorimetric dual-mode detection strategy for Glu, based on CeO2:Eu3+ nanomaterials, with the aim of enhancing the accuracy of Glu quantification. The CeO2:Eu3+ nanomaterials exhibited excellent ECL performance in an ECL system using potassium persulfate (K2S2O8) as the coreactant. Notably, their ECL intensity could be effectively quenched by hydrogen peroxide (H2O2), and the quenching efficiency showed a linear correlation with H2O2 concentration, this relationship enabled the quantitative detection of H2O2. Furthermore, the peroxidase-mimetic activity of CeO2:Eu3+ nanomaterials further enhanced the ECL quenching efficiency, thereby improving the sensitivity of H2O2 detection. Concurrently, the CeO2:Eu3+ nanomaterials displayed remarkable peroxidase-mimetic activity in the chromogenic reaction between 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2, inducing a distinct color transition from colorless to blue that could be easily visualized and recorded using a smartphone. Leveraging these properties of CeO2:Eu3+ nanomaterials, combined with the reaction mechanism wherein Glu generates H2O2 under the catalysis of Glu oxidase (GOx), we established a dual-mode detection method for Glu. Under optimized experimental conditions, this method achieved highly sensitive and selective Glu detection: the limit of detection (LOD) was as low as 0.033 nM for the ECL mode and 1.46 μM for the colorimetric mode (S/N = 3). This work integrates the unique dual functionalities of CeO2:Eu3+ nanomaterials to realize sensitive dual-mode Glu detection, providing new insights for the innovative design of dual-mode sensors and exhibiting significant potential in clinical diabetes monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信