实用的富锂/锰层状氧化物阴极锂离子电池:材料和电池设计的技术经济视角。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anindityo Arifiadi, Sebastian Oster, Donggun Eum, Dominik Voigt, Andrzej Kulka, Hyuck Hur, Martin Winter, Johannes Kasnatscheew
{"title":"实用的富锂/锰层状氧化物阴极锂离子电池:材料和电池设计的技术经济视角。","authors":"Anindityo Arifiadi, Sebastian Oster, Donggun Eum, Dominik Voigt, Andrzej Kulka, Hyuck Hur, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/advs.202512467","DOIUrl":null,"url":null,"abstract":"<p><p>Li/Mn-rich layered oxide (LMR) cathode active materials offer a pathway towards high specific energy and low-cost Li ion batteries (LIBs) due to their high practical specific discharge capacity (>250 mAh g<sup>-1</sup>) at moderate discharge voltages (≈3.5 V). However, oxygen redox requires electrochemical activation at high cathode potentials (> 4.5 V vs Li|Li<sup>+</sup>), resulting in bulk degradation and surface reactivity. This perspective first summarizes the literature-known efforts to elucidate the oxygen redox mechanism and then proposes strategies for systematic R&D of LMR, supported with techno-economic analysis. Initially, bulk degradation should be addressed via compositional tuning and crystal modification. Subsequently, the microstructure, interphase, and electrolyte should be engineered, and finally, the charging protocol should be optimized. The various LMR chemistries with different Li to TM, Ni to Mn, and Co to Ni ratios are techno-economically analyzed, and perspectives on the ideal LMR composition are presented. Ultimately, the specific energy, energy density, and costs of LMR || graphite cells are compared to state-of-the-art cell chemistries.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12467"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Practical Li-Ion Cells With Li/Mn-Rich Layered Oxide Cathodes: A Techno-Economic Perspective on Material and Cell Design.\",\"authors\":\"Anindityo Arifiadi, Sebastian Oster, Donggun Eum, Dominik Voigt, Andrzej Kulka, Hyuck Hur, Martin Winter, Johannes Kasnatscheew\",\"doi\":\"10.1002/advs.202512467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Li/Mn-rich layered oxide (LMR) cathode active materials offer a pathway towards high specific energy and low-cost Li ion batteries (LIBs) due to their high practical specific discharge capacity (>250 mAh g<sup>-1</sup>) at moderate discharge voltages (≈3.5 V). However, oxygen redox requires electrochemical activation at high cathode potentials (> 4.5 V vs Li|Li<sup>+</sup>), resulting in bulk degradation and surface reactivity. This perspective first summarizes the literature-known efforts to elucidate the oxygen redox mechanism and then proposes strategies for systematic R&D of LMR, supported with techno-economic analysis. Initially, bulk degradation should be addressed via compositional tuning and crystal modification. Subsequently, the microstructure, interphase, and electrolyte should be engineered, and finally, the charging protocol should be optimized. The various LMR chemistries with different Li to TM, Ni to Mn, and Co to Ni ratios are techno-economically analyzed, and perspectives on the ideal LMR composition are presented. Ultimately, the specific energy, energy density, and costs of LMR || graphite cells are compared to state-of-the-art cell chemistries.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e12467\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202512467\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512467","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富锂/锰层状氧化物(LMR)阴极活性材料在中等放电电压(≈3.5 V)下具有较高的实际比放电容量(>250 mAh g-1),为实现高比能和低成本的锂离子电池(LIBs)提供了一条途径。然而,氧氧化还原需要在高阴极电位(> 4.5 V vs Li|Li+)下进行电化学活化,从而导致体降解和表面反应性。本文首先总结了国内外对氧氧化还原机理的研究成果,然后提出了LMR系统研发的策略,并进行了技术经济分析。最初,应该通过成分调整和晶体修饰来解决体降解问题。然后,对微结构、界面相和电解质进行设计,最后对充电方案进行优化。对不同Li / TM、Ni / Mn、Co / Ni比的LMR化学成分进行了技术经济分析,并对理想的LMR组成进行了展望。最后,将LMR b|石墨电池的比能、能量密度和成本与最先进的电池化学技术进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Practical Li-Ion Cells With Li/Mn-Rich Layered Oxide Cathodes: A Techno-Economic Perspective on Material and Cell Design.

Li/Mn-rich layered oxide (LMR) cathode active materials offer a pathway towards high specific energy and low-cost Li ion batteries (LIBs) due to their high practical specific discharge capacity (>250 mAh g-1) at moderate discharge voltages (≈3.5 V). However, oxygen redox requires electrochemical activation at high cathode potentials (> 4.5 V vs Li|Li+), resulting in bulk degradation and surface reactivity. This perspective first summarizes the literature-known efforts to elucidate the oxygen redox mechanism and then proposes strategies for systematic R&D of LMR, supported with techno-economic analysis. Initially, bulk degradation should be addressed via compositional tuning and crystal modification. Subsequently, the microstructure, interphase, and electrolyte should be engineered, and finally, the charging protocol should be optimized. The various LMR chemistries with different Li to TM, Ni to Mn, and Co to Ni ratios are techno-economically analyzed, and perspectives on the ideal LMR composition are presented. Ultimately, the specific energy, energy density, and costs of LMR || graphite cells are compared to state-of-the-art cell chemistries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信