聚乳酸、聚乙烯和聚丙烯微塑料的嗜热厌氧消化:菌底比和微生物组的影响。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mahesh Mohan, Zain Ul Abedien, Prasad Kaparaju
{"title":"聚乳酸、聚乙烯和聚丙烯微塑料的嗜热厌氧消化:菌底比和微生物组的影响。","authors":"Mahesh Mohan,&nbsp;Zain Ul Abedien,&nbsp;Prasad Kaparaju","doi":"10.1007/s10532-025-10186-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVS<sub>added</sub> at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVS<sub>added</sub> and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota<i>,</i> genus D8A-2, <i>Thermovirga</i> and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of <i>Methanothermobacter</i> indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10186-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermophilic anaerobic digestion of polylactic acid, polyethylene and polypropylene microplastics: effect of inoculum-substrate ratio and microbiome\",\"authors\":\"Mahesh Mohan,&nbsp;Zain Ul Abedien,&nbsp;Prasad Kaparaju\",\"doi\":\"10.1007/s10532-025-10186-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVS<sub>added</sub> at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVS<sub>added</sub> and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota<i>,</i> genus D8A-2, <i>Thermovirga</i> and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of <i>Methanothermobacter</i> indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10532-025-10186-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10186-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10186-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由主要塑料聚合物产生的微塑料(MPs)对环境造成了影响,制定一个寿命终结方案是当务之急。本研究研究了在嗜热和中温厌氧消化(AD)条件下,接种物与底物比(ISR) 2、4和6对聚乙烯(PE)、聚丙烯(PP)和聚乳酸(PLA)产MPs的影响。结果表明,嗜热AD是一种有前景的PLA降解方法,在ISR4添加时,最大累积沼气产量为894.08 NmL/ gvsvs4,在148天的孵育期间,挥发性脂肪酸(VFA)利用率为89.62%。然而,PP和PE的嗜热AD效率极低,最大沼气产量分别为111.64和47.48 NmL/ gvsadd,并导致VFA积累。在中温AD条件下,由于水解时间长,PLA的降解效率非常低,而PP和PE都有抑制作用。微生物学研究表明,在PLA的嗜热AD过程中,厚壁菌门和协同菌门、D8A-2属、热virga和Candidatus Caldatribacterium的丰度较高。产甲烷菌的丰度表明,产氢甲烷是MPs嗜热AD过程中产甲烷的主要途径。在PP和PE的AD中观察到与活性氧解毒有关的PWY-3781丰度。总的来说,该研究为改善PLA的耐热性AD的前景提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermophilic anaerobic digestion of polylactic acid, polyethylene and polypropylene microplastics: effect of inoculum-substrate ratio and microbiome

Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVSadded at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVSadded and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota, genus D8A-2, Thermovirga and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of Methanothermobacter indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信