{"title":"丹参酮I通过激活Nrf2/SLC7A11轴抑制股骨骨坏死以防止类固醇诱导的股骨头坏死","authors":"Liangyu Lu, Miaomiao Zhou, Xiaolong Zhang, Xiabing Qin","doi":"10.1007/s10528-025-11247-4","DOIUrl":null,"url":null,"abstract":"<p><p>We sought to explore how Tanshinone I (TsI) mediates ferroptosis in femur tissue in a rat model of steroid-induced osteonecrosis of the femoral head (SIONFH). Rats were given lipopolysaccharide and methylprednisolone to develop a rat model of SIONFH and treated with 5 mg/kg or 10 mg/kg TsI or in combination with ferroptosis inhibitor Fer-1. After different treatments, bone parameters (BMD, BV/TV, Tb.N, Tb.Th, and Tb.Sp), the levels of osteoblast markers (RUNX2, BGLAP, and Osteopontin proteins), and ferroptosis markers (SLC7A11, GPX4, and ACSL4) in femur tissues were detected; Additionally, ferroptosis indicators Fe<sup>2+</sup>, MDA, and GSH in femur tissues were detected by corresponding commercial kits. Additionally, this research conducted experiments including TUNEL staining for the cell death rate in femur tissue and immunofluorescence for reactive oxygen species (ROS) detection. The levels of GPX4 (ferroptosis resistance marker), Nrf2, and SLC7A11 through PCR, Western blot, and immunohistochemistry experiments. Furthermore, lentivirus was delivered into SIONFH rats to knock Nrf2 or SLC7A11 down to investigates whether TsI mediated Nrf2/SLC7A11. BMD, BV/TV, Tb.N, and Tb.Th decreased while Tb.SP increased in SIONFH rats, with increased pathological damage to femoral tissue, reductions in expression of osteoblast markers, and increased positive TUNEL signal and cell death rate. Meanwhile, enhanced ferroptosis evidenced by relevant markers was noted in femur tissues. Low- and high-dose TsI treatment attenuated ferroptosis in femoral tissue, improved bone parameters and pathological lesions in SIONFH rats, with the high-dose group demonstrating more pronounced therapeutic effects. Similarly, Fer-1 treatment exerted a comparable protective effect to that of TsI. Mechanistically, low-dose or high-dose TsI treatment up-regulated Nrf2 and SLC7A11 levels, while down-regulation of Nrf2 or SLC7A11 partly compromised the aforementioned impacts of TsI. TsI may alleviate the pathological lesions of SIONFH rats by activating the Nrf2 signaling pathway, thereby promoting SLC7A11 expression and inhibiting ferroptosis in femoral tissue. TsI holds significant potential for therapeutic applications in the treatment of SIONFH.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanshinone I Represses Ferroptosis to Protect Against Steroid-Induced Osteonecrosis of the Femoral Head by Activating the Nrf2/SLC7A11 Axis.\",\"authors\":\"Liangyu Lu, Miaomiao Zhou, Xiaolong Zhang, Xiabing Qin\",\"doi\":\"10.1007/s10528-025-11247-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We sought to explore how Tanshinone I (TsI) mediates ferroptosis in femur tissue in a rat model of steroid-induced osteonecrosis of the femoral head (SIONFH). Rats were given lipopolysaccharide and methylprednisolone to develop a rat model of SIONFH and treated with 5 mg/kg or 10 mg/kg TsI or in combination with ferroptosis inhibitor Fer-1. After different treatments, bone parameters (BMD, BV/TV, Tb.N, Tb.Th, and Tb.Sp), the levels of osteoblast markers (RUNX2, BGLAP, and Osteopontin proteins), and ferroptosis markers (SLC7A11, GPX4, and ACSL4) in femur tissues were detected; Additionally, ferroptosis indicators Fe<sup>2+</sup>, MDA, and GSH in femur tissues were detected by corresponding commercial kits. Additionally, this research conducted experiments including TUNEL staining for the cell death rate in femur tissue and immunofluorescence for reactive oxygen species (ROS) detection. The levels of GPX4 (ferroptosis resistance marker), Nrf2, and SLC7A11 through PCR, Western blot, and immunohistochemistry experiments. Furthermore, lentivirus was delivered into SIONFH rats to knock Nrf2 or SLC7A11 down to investigates whether TsI mediated Nrf2/SLC7A11. BMD, BV/TV, Tb.N, and Tb.Th decreased while Tb.SP increased in SIONFH rats, with increased pathological damage to femoral tissue, reductions in expression of osteoblast markers, and increased positive TUNEL signal and cell death rate. Meanwhile, enhanced ferroptosis evidenced by relevant markers was noted in femur tissues. Low- and high-dose TsI treatment attenuated ferroptosis in femoral tissue, improved bone parameters and pathological lesions in SIONFH rats, with the high-dose group demonstrating more pronounced therapeutic effects. Similarly, Fer-1 treatment exerted a comparable protective effect to that of TsI. Mechanistically, low-dose or high-dose TsI treatment up-regulated Nrf2 and SLC7A11 levels, while down-regulation of Nrf2 or SLC7A11 partly compromised the aforementioned impacts of TsI. TsI may alleviate the pathological lesions of SIONFH rats by activating the Nrf2 signaling pathway, thereby promoting SLC7A11 expression and inhibiting ferroptosis in femoral tissue. TsI holds significant potential for therapeutic applications in the treatment of SIONFH.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-025-11247-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11247-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tanshinone I Represses Ferroptosis to Protect Against Steroid-Induced Osteonecrosis of the Femoral Head by Activating the Nrf2/SLC7A11 Axis.
We sought to explore how Tanshinone I (TsI) mediates ferroptosis in femur tissue in a rat model of steroid-induced osteonecrosis of the femoral head (SIONFH). Rats were given lipopolysaccharide and methylprednisolone to develop a rat model of SIONFH and treated with 5 mg/kg or 10 mg/kg TsI or in combination with ferroptosis inhibitor Fer-1. After different treatments, bone parameters (BMD, BV/TV, Tb.N, Tb.Th, and Tb.Sp), the levels of osteoblast markers (RUNX2, BGLAP, and Osteopontin proteins), and ferroptosis markers (SLC7A11, GPX4, and ACSL4) in femur tissues were detected; Additionally, ferroptosis indicators Fe2+, MDA, and GSH in femur tissues were detected by corresponding commercial kits. Additionally, this research conducted experiments including TUNEL staining for the cell death rate in femur tissue and immunofluorescence for reactive oxygen species (ROS) detection. The levels of GPX4 (ferroptosis resistance marker), Nrf2, and SLC7A11 through PCR, Western blot, and immunohistochemistry experiments. Furthermore, lentivirus was delivered into SIONFH rats to knock Nrf2 or SLC7A11 down to investigates whether TsI mediated Nrf2/SLC7A11. BMD, BV/TV, Tb.N, and Tb.Th decreased while Tb.SP increased in SIONFH rats, with increased pathological damage to femoral tissue, reductions in expression of osteoblast markers, and increased positive TUNEL signal and cell death rate. Meanwhile, enhanced ferroptosis evidenced by relevant markers was noted in femur tissues. Low- and high-dose TsI treatment attenuated ferroptosis in femoral tissue, improved bone parameters and pathological lesions in SIONFH rats, with the high-dose group demonstrating more pronounced therapeutic effects. Similarly, Fer-1 treatment exerted a comparable protective effect to that of TsI. Mechanistically, low-dose or high-dose TsI treatment up-regulated Nrf2 and SLC7A11 levels, while down-regulation of Nrf2 or SLC7A11 partly compromised the aforementioned impacts of TsI. TsI may alleviate the pathological lesions of SIONFH rats by activating the Nrf2 signaling pathway, thereby promoting SLC7A11 expression and inhibiting ferroptosis in femoral tissue. TsI holds significant potential for therapeutic applications in the treatment of SIONFH.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.