{"title":"一种新型纤维素水解菌的分离鉴定及甘蔗渣水解产酶的优化。","authors":"Nguyen Thi Hong, Le Duy Khuong","doi":"10.1007/s10532-025-10193-7","DOIUrl":null,"url":null,"abstract":"<div><p>The current study’s primary objectives were to screen for novel FPase-producing bacteria and optimize hydrolysis conditions for alkali-thermally pretreated sugarcane bagasse. This study carefully screened cellulolytic bacteria from soil and identified KH-08 as a potent FPase-producing strain. Based on 16S ribosomal RNA and gyrA gene sequences, KH-08 was identified as <i>Bacillus velezensis</i>, a newly found microbe capable of producing FPase. Experiments were conducted to optimize FPase-producing parameters such as fermentation time, temperature, and pH. The study improved FPase output by refining these parameters using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). The derived quadratic polynomial model demonstrated great dependability (R<sup>2</sup> = 99.8%) and interactions that are statistically significant (P < 0.05). The ideal fermentation conditions—6 days, 30 °C, and pH 6.5—resulted in the greatest FPase activity of 75.93 U/L. The remarkable enzyme yield achieved under mild conditions clearly demonstrates the superiority of <i>Bacillus velezensis</i> KH-08 over previously reported cellulolytic strains. This exceptional performance underscores its potential as a highly promising candidate for industrial-scale bioconversion, with direct implications for bioethanol production, biomass valorization, and waste to energy technologies.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and identification of a novel cellulolytic bacterium and optimization of FPase production for bagasse hydrolysis\",\"authors\":\"Nguyen Thi Hong, Le Duy Khuong\",\"doi\":\"10.1007/s10532-025-10193-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study’s primary objectives were to screen for novel FPase-producing bacteria and optimize hydrolysis conditions for alkali-thermally pretreated sugarcane bagasse. This study carefully screened cellulolytic bacteria from soil and identified KH-08 as a potent FPase-producing strain. Based on 16S ribosomal RNA and gyrA gene sequences, KH-08 was identified as <i>Bacillus velezensis</i>, a newly found microbe capable of producing FPase. Experiments were conducted to optimize FPase-producing parameters such as fermentation time, temperature, and pH. The study improved FPase output by refining these parameters using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). The derived quadratic polynomial model demonstrated great dependability (R<sup>2</sup> = 99.8%) and interactions that are statistically significant (P < 0.05). The ideal fermentation conditions—6 days, 30 °C, and pH 6.5—resulted in the greatest FPase activity of 75.93 U/L. The remarkable enzyme yield achieved under mild conditions clearly demonstrates the superiority of <i>Bacillus velezensis</i> KH-08 over previously reported cellulolytic strains. This exceptional performance underscores its potential as a highly promising candidate for industrial-scale bioconversion, with direct implications for bioethanol production, biomass valorization, and waste to energy technologies.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10193-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10193-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation and identification of a novel cellulolytic bacterium and optimization of FPase production for bagasse hydrolysis
The current study’s primary objectives were to screen for novel FPase-producing bacteria and optimize hydrolysis conditions for alkali-thermally pretreated sugarcane bagasse. This study carefully screened cellulolytic bacteria from soil and identified KH-08 as a potent FPase-producing strain. Based on 16S ribosomal RNA and gyrA gene sequences, KH-08 was identified as Bacillus velezensis, a newly found microbe capable of producing FPase. Experiments were conducted to optimize FPase-producing parameters such as fermentation time, temperature, and pH. The study improved FPase output by refining these parameters using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). The derived quadratic polynomial model demonstrated great dependability (R2 = 99.8%) and interactions that are statistically significant (P < 0.05). The ideal fermentation conditions—6 days, 30 °C, and pH 6.5—resulted in the greatest FPase activity of 75.93 U/L. The remarkable enzyme yield achieved under mild conditions clearly demonstrates the superiority of Bacillus velezensis KH-08 over previously reported cellulolytic strains. This exceptional performance underscores its potential as a highly promising candidate for industrial-scale bioconversion, with direct implications for bioethanol production, biomass valorization, and waste to energy technologies.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.