高安全性锂金属电池用自组装芳纶基纳米纤维分离器。

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dong Bo Fu, Gao Jun Liu, Jing Rui Chen, Xue Yang, Ting Guo Yan, Ping Chuan Ma, Le Yu
{"title":"高安全性锂金属电池用自组装芳纶基纳米纤维分离器。","authors":"Dong Bo Fu, Gao Jun Liu, Jing Rui Chen, Xue Yang, Ting Guo Yan, Ping Chuan Ma, Le Yu","doi":"10.1002/asia.202500859","DOIUrl":null,"url":null,"abstract":"<p><p>Higher safety standards are essential for the development of high-energy-density batteries within the rapidly advancing electric vehicle and large-scale energy storage industries. Herein, we report a novel, simple, and successive process to coat the 1,3,5-triaminophenoxybenzene (TAB) covalently crosslinked poly (p-phenylene terephthamide) (PPTA) onto commercial polyethylene (PE) as separators (denoted as PPTA/TAB@PE) for high safety lithium (Li) metal batteries (LMBs). Without any additional binder, the PPTA/TAB nanofiber coating layer sticks to porous PE separators by physical anchoring, improving the heat resistance and mechanical properties of the composite separators. Meanwhile, migration routes for Li-ions are guaranteed by the porous structure assembled of the fibrillar units during the nonsolvent induced phase separation. The designed PPTA/TAB@PE separator shows a high Li-ion transference number of 0.65. As a result, the symmetric Li||Li cell with PPTA/TAB@PE separator demonstrates stable Li plating and stripping. The associated Li||LiFePO<sub>4</sub> and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> half cells exhibit high capacity, excellent rate performance, and remarkable cycling stability, significantly surpassing those of cells using commercial separator. This research presents an innovative method for designing functionalized separators to enhance the performance of LMBs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00859"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembled Aramid-Based Nanofiber Separator for High Safety Lithium Metal Batteries.\",\"authors\":\"Dong Bo Fu, Gao Jun Liu, Jing Rui Chen, Xue Yang, Ting Guo Yan, Ping Chuan Ma, Le Yu\",\"doi\":\"10.1002/asia.202500859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Higher safety standards are essential for the development of high-energy-density batteries within the rapidly advancing electric vehicle and large-scale energy storage industries. Herein, we report a novel, simple, and successive process to coat the 1,3,5-triaminophenoxybenzene (TAB) covalently crosslinked poly (p-phenylene terephthamide) (PPTA) onto commercial polyethylene (PE) as separators (denoted as PPTA/TAB@PE) for high safety lithium (Li) metal batteries (LMBs). Without any additional binder, the PPTA/TAB nanofiber coating layer sticks to porous PE separators by physical anchoring, improving the heat resistance and mechanical properties of the composite separators. Meanwhile, migration routes for Li-ions are guaranteed by the porous structure assembled of the fibrillar units during the nonsolvent induced phase separation. The designed PPTA/TAB@PE separator shows a high Li-ion transference number of 0.65. As a result, the symmetric Li||Li cell with PPTA/TAB@PE separator demonstrates stable Li plating and stripping. The associated Li||LiFePO<sub>4</sub> and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> half cells exhibit high capacity, excellent rate performance, and remarkable cycling stability, significantly surpassing those of cells using commercial separator. This research presents an innovative method for designing functionalized separators to enhance the performance of LMBs.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e00859\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202500859\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500859","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的电动汽车和大规模储能产业中,更高的安全标准对于高能量密度电池的发展至关重要。在此,我们报告了一种新的,简单的,连续的工艺,将1,3,5-三氨基苯氧苯(TAB)共价交联聚(对苯基对苯二胺)(PPTA)涂覆在商用聚乙烯(PE)上作为高安全性锂(Li)金属电池(lmb)的分离器(标记为PPTA/TAB@PE)。在不添加任何粘结剂的情况下,PPTA/TAB纳米纤维涂层通过物理锚定的方式粘附在多孔PE隔膜上,提高了复合隔膜的耐热性和力学性能。同时,在非溶剂诱导相分离过程中,纤维单元组装的多孔结构保证了锂离子的迁移路线。所设计的PPTA/TAB@PE分离器具有较高的锂离子转移数0.65。结果表明,采用PPTA/TAB@PE隔膜制备的对称Li||锂电池表现出稳定的镀锂和剥离。结合的Li||LiFePO4和Li||LiNi0.8Co0.1Mn0.1O2半电池具有高容量、优异的倍率性能和显著的循环稳定性,明显优于使用商用隔膜的电池。本研究提出了一种设计功能化分离器的创新方法,以提高lmb的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-assembled Aramid-Based Nanofiber Separator for High Safety Lithium Metal Batteries.

Higher safety standards are essential for the development of high-energy-density batteries within the rapidly advancing electric vehicle and large-scale energy storage industries. Herein, we report a novel, simple, and successive process to coat the 1,3,5-triaminophenoxybenzene (TAB) covalently crosslinked poly (p-phenylene terephthamide) (PPTA) onto commercial polyethylene (PE) as separators (denoted as PPTA/TAB@PE) for high safety lithium (Li) metal batteries (LMBs). Without any additional binder, the PPTA/TAB nanofiber coating layer sticks to porous PE separators by physical anchoring, improving the heat resistance and mechanical properties of the composite separators. Meanwhile, migration routes for Li-ions are guaranteed by the porous structure assembled of the fibrillar units during the nonsolvent induced phase separation. The designed PPTA/TAB@PE separator shows a high Li-ion transference number of 0.65. As a result, the symmetric Li||Li cell with PPTA/TAB@PE separator demonstrates stable Li plating and stripping. The associated Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 half cells exhibit high capacity, excellent rate performance, and remarkable cycling stability, significantly surpassing those of cells using commercial separator. This research presents an innovative method for designing functionalized separators to enhance the performance of LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信