Haoyang Gao, Leigh S. Martin, Lillian B. Hughes, Nathaniel T. Leitao, Piotr Put, Hengyun Zhou, Nazli U. Koyluoglu, Simon A. Meynell, Ania C. Bleszynski Jayich, Hongkun Park, Mikhail D. Lukin
{"title":"非对称多体回波在固态传感器中的信号放大","authors":"Haoyang Gao, Leigh S. Martin, Lillian B. Hughes, Nathaniel T. Leitao, Piotr Put, Hengyun Zhou, Nazli U. Koyluoglu, Simon A. Meynell, Ania C. Bleszynski Jayich, Hongkun Park, Mikhail D. Lukin","doi":"10.1038/s41586-025-09452-7","DOIUrl":null,"url":null,"abstract":"Electronic spins of nitrogen–vacancy centres in diamond constitute a promising system for micro- and nanoscale magnetic sensing1–4, because of their operation under ambient conditions5, ease of placement in close proximity to sensing targets6 and biological compatibility7. At high densities, the electronic spins interact through dipolar coupling, which typically limits8 but can also potentially enhance9 sensing performance. Here we report the experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor. Our approach uses time-reversed two-axis-twisting interactions, engineered through dynamical control of the quantization axis and Floquet engineering10 in a two-dimensional ensemble of nitrogen–vacancy centres. We observe that optimal amplification occurs when the backward evolution time equals twice the forward evolution time, in sharp contrast to the conventional Loschmidt echo11,12. These observations can be understood as resulting from an underlying time-reversed mirror symmetry of the microscopic dynamics, providing key insights into signal amplification and opportunities for practical entanglement-enhanced quantum sensing. The experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor is reported.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"646 8083","pages":"68-73"},"PeriodicalIF":48.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41586-025-09452-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Signal amplification in a solid-state sensor through asymmetric many-body echo\",\"authors\":\"Haoyang Gao, Leigh S. Martin, Lillian B. Hughes, Nathaniel T. Leitao, Piotr Put, Hengyun Zhou, Nazli U. Koyluoglu, Simon A. Meynell, Ania C. Bleszynski Jayich, Hongkun Park, Mikhail D. Lukin\",\"doi\":\"10.1038/s41586-025-09452-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic spins of nitrogen–vacancy centres in diamond constitute a promising system for micro- and nanoscale magnetic sensing1–4, because of their operation under ambient conditions5, ease of placement in close proximity to sensing targets6 and biological compatibility7. At high densities, the electronic spins interact through dipolar coupling, which typically limits8 but can also potentially enhance9 sensing performance. Here we report the experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor. Our approach uses time-reversed two-axis-twisting interactions, engineered through dynamical control of the quantization axis and Floquet engineering10 in a two-dimensional ensemble of nitrogen–vacancy centres. We observe that optimal amplification occurs when the backward evolution time equals twice the forward evolution time, in sharp contrast to the conventional Loschmidt echo11,12. These observations can be understood as resulting from an underlying time-reversed mirror symmetry of the microscopic dynamics, providing key insights into signal amplification and opportunities for practical entanglement-enhanced quantum sensing. The experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor is reported.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"646 8083\",\"pages\":\"68-73\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s41586-025-09452-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-09452-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09452-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Signal amplification in a solid-state sensor through asymmetric many-body echo
Electronic spins of nitrogen–vacancy centres in diamond constitute a promising system for micro- and nanoscale magnetic sensing1–4, because of their operation under ambient conditions5, ease of placement in close proximity to sensing targets6 and biological compatibility7. At high densities, the electronic spins interact through dipolar coupling, which typically limits8 but can also potentially enhance9 sensing performance. Here we report the experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor. Our approach uses time-reversed two-axis-twisting interactions, engineered through dynamical control of the quantization axis and Floquet engineering10 in a two-dimensional ensemble of nitrogen–vacancy centres. We observe that optimal amplification occurs when the backward evolution time equals twice the forward evolution time, in sharp contrast to the conventional Loschmidt echo11,12. These observations can be understood as resulting from an underlying time-reversed mirror symmetry of the microscopic dynamics, providing key insights into signal amplification and opportunities for practical entanglement-enhanced quantum sensing. The experimental demonstration of many-body signal amplification in a solid-state, room-temperature quantum sensor is reported.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.