{"title":"具有神经血管再生特性的硅酸镁复合贴片促进小鼠糖尿病创面愈合","authors":"Shunxiang Xu, Hongwei Shao, Zheyu Jin, Jiankun Xu, Fanyan Deng, Yuantao Zhang, Liangbin Zhou, Samuel Ka-kin Ling, Congqin Ning, Wenxue Tong, Ling Qin","doi":"10.1002/idm2.70003","DOIUrl":null,"url":null,"abstract":"<p>Given the confluence of dysregulated inflammation, vasculopathy, and neuropathy, diabetic wounds pose a significant clinical challenge. Commercially available wound dressings often lack sufficient bioactivity, failing to meet clinical demands. Herein, we developed a PCL-PLLA-MgSiO<sub>3</sub> (PP-MgSi) patch with promising therapeutic effects. The PP-MgSi composite patch was manufactured via electrospinning and characterized by controllable degradation and local release of Mg<sup>2+</sup> and SiO<sub>3</sub><sup>2</sup><sup>−</sup>. The patch showed favorable in vitro biocompatibility and bioactivity, notably increased angiogenesis, myelination, and neurite outgrowth. In type 2 diabetic mice, the PP-MgSi patch exhibited MgSi dose-dependent effects on enhancing diabetic wound healing by modulating the expression of TNF-α, iNOS, and CD206 to balance inflammation, while boosting CD31 and β3-tubulin levels to promote neurovascularization. With the significant suppression of pro-inflammatory-related TNF and IL-17 pathways, while activating the peripheral nerve-associated axon guidance pathway, blood vessel-associated HIF-1α and VEGF pathways, the PP-MgSi patch ultimately achieved accelerated healing compared to the control group. Ultimately, the PP-MgSi patch exhibited an accelerated repair rate, with comparable neovascularization and superior peripheral nerve regeneration capacity compared to three representative commercially available products. This proof-of-concept work presents a promising bioactive PP-MgSi patch for future clinical diabetic wound management, particularly in terms of its neurovascular network recovery properties.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 5","pages":"745-762"},"PeriodicalIF":24.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.70003","citationCount":"0","resultStr":"{\"title\":\"Magnesium Silicate Composite Patch With Neurovascular Regenerative Properties Promotes Diabetic Wound Healing in Mice\",\"authors\":\"Shunxiang Xu, Hongwei Shao, Zheyu Jin, Jiankun Xu, Fanyan Deng, Yuantao Zhang, Liangbin Zhou, Samuel Ka-kin Ling, Congqin Ning, Wenxue Tong, Ling Qin\",\"doi\":\"10.1002/idm2.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the confluence of dysregulated inflammation, vasculopathy, and neuropathy, diabetic wounds pose a significant clinical challenge. Commercially available wound dressings often lack sufficient bioactivity, failing to meet clinical demands. Herein, we developed a PCL-PLLA-MgSiO<sub>3</sub> (PP-MgSi) patch with promising therapeutic effects. The PP-MgSi composite patch was manufactured via electrospinning and characterized by controllable degradation and local release of Mg<sup>2+</sup> and SiO<sub>3</sub><sup>2</sup><sup>−</sup>. The patch showed favorable in vitro biocompatibility and bioactivity, notably increased angiogenesis, myelination, and neurite outgrowth. In type 2 diabetic mice, the PP-MgSi patch exhibited MgSi dose-dependent effects on enhancing diabetic wound healing by modulating the expression of TNF-α, iNOS, and CD206 to balance inflammation, while boosting CD31 and β3-tubulin levels to promote neurovascularization. With the significant suppression of pro-inflammatory-related TNF and IL-17 pathways, while activating the peripheral nerve-associated axon guidance pathway, blood vessel-associated HIF-1α and VEGF pathways, the PP-MgSi patch ultimately achieved accelerated healing compared to the control group. Ultimately, the PP-MgSi patch exhibited an accelerated repair rate, with comparable neovascularization and superior peripheral nerve regeneration capacity compared to three representative commercially available products. This proof-of-concept work presents a promising bioactive PP-MgSi patch for future clinical diabetic wound management, particularly in terms of its neurovascular network recovery properties.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"4 5\",\"pages\":\"745-762\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magnesium Silicate Composite Patch With Neurovascular Regenerative Properties Promotes Diabetic Wound Healing in Mice
Given the confluence of dysregulated inflammation, vasculopathy, and neuropathy, diabetic wounds pose a significant clinical challenge. Commercially available wound dressings often lack sufficient bioactivity, failing to meet clinical demands. Herein, we developed a PCL-PLLA-MgSiO3 (PP-MgSi) patch with promising therapeutic effects. The PP-MgSi composite patch was manufactured via electrospinning and characterized by controllable degradation and local release of Mg2+ and SiO32−. The patch showed favorable in vitro biocompatibility and bioactivity, notably increased angiogenesis, myelination, and neurite outgrowth. In type 2 diabetic mice, the PP-MgSi patch exhibited MgSi dose-dependent effects on enhancing diabetic wound healing by modulating the expression of TNF-α, iNOS, and CD206 to balance inflammation, while boosting CD31 and β3-tubulin levels to promote neurovascularization. With the significant suppression of pro-inflammatory-related TNF and IL-17 pathways, while activating the peripheral nerve-associated axon guidance pathway, blood vessel-associated HIF-1α and VEGF pathways, the PP-MgSi patch ultimately achieved accelerated healing compared to the control group. Ultimately, the PP-MgSi patch exhibited an accelerated repair rate, with comparable neovascularization and superior peripheral nerve regeneration capacity compared to three representative commercially available products. This proof-of-concept work presents a promising bioactive PP-MgSi patch for future clinical diabetic wound management, particularly in terms of its neurovascular network recovery properties.