双玻璃隧道氧化钝化触点光伏组件长期电位诱导降解评价方法研究

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-08-31 DOI:10.1002/solr.202500466
Zhiwei Li, Anan Ma, Jian Huang, Chengfa Liu, Kai Yu, Hongbin Hou, Le Zhou, Qin Xiao, Xilian Sun, Le Wang, Yifeng Chen, Jifan Gao, Shaowen Huang, Lang Zhou
{"title":"双玻璃隧道氧化钝化触点光伏组件长期电位诱导降解评价方法研究","authors":"Zhiwei Li,&nbsp;Anan Ma,&nbsp;Jian Huang,&nbsp;Chengfa Liu,&nbsp;Kai Yu,&nbsp;Hongbin Hou,&nbsp;Le Zhou,&nbsp;Qin Xiao,&nbsp;Xilian Sun,&nbsp;Le Wang,&nbsp;Yifeng Chen,&nbsp;Jifan Gao,&nbsp;Shaowen Huang,&nbsp;Lang Zhou","doi":"10.1002/solr.202500466","DOIUrl":null,"url":null,"abstract":"<p>Polarization-type potential-induced degradation (PID-p) has become a risk for tunnel oxide passivated contact (TOPCon) solar cell modules. For the sake of intimating the long-term PID-p degradation of the modules under outdoor illumination, this study investigates the impact of different types and timing of illumination on the PID-p on the double-sided EVA encapsulated TOPCon modules: 1) multiple cycles of a PID test in the dark followed by a 2 kWh UV recovery; 2) PID tests under 170 W/m<sup>2</sup> UV illumination; and 3) PID tests under 800 W/m<sup>2</sup> simulated steady-state solar illumination. We find that all three testing methods lead to less power degradation than that in the dark after 96 h so that TOPCon photovoltaic modules will not suffer from severe PID-p risk in short term when running outdoors. After 672 h, the module subjected to PID tests under 800 W/m<sup>2</sup> simulated steady-state solar illumination shows the lowest degradation of −3.18%. This method more closely resembles the long-term outdoor operating conditions, where the module generating voltage under illumination forms a ground potential. Moreover, excessive UV irradiation in the testing method may exacerbate the UV-induced degradation issue and accelerate the aging of the encapsulant.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Methodologies for Assessment of Long-Term Potential-Induced Degradation of Double-Glass Tunnel Oxide Passivated Contact Photovoltaic Modules\",\"authors\":\"Zhiwei Li,&nbsp;Anan Ma,&nbsp;Jian Huang,&nbsp;Chengfa Liu,&nbsp;Kai Yu,&nbsp;Hongbin Hou,&nbsp;Le Zhou,&nbsp;Qin Xiao,&nbsp;Xilian Sun,&nbsp;Le Wang,&nbsp;Yifeng Chen,&nbsp;Jifan Gao,&nbsp;Shaowen Huang,&nbsp;Lang Zhou\",\"doi\":\"10.1002/solr.202500466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polarization-type potential-induced degradation (PID-p) has become a risk for tunnel oxide passivated contact (TOPCon) solar cell modules. For the sake of intimating the long-term PID-p degradation of the modules under outdoor illumination, this study investigates the impact of different types and timing of illumination on the PID-p on the double-sided EVA encapsulated TOPCon modules: 1) multiple cycles of a PID test in the dark followed by a 2 kWh UV recovery; 2) PID tests under 170 W/m<sup>2</sup> UV illumination; and 3) PID tests under 800 W/m<sup>2</sup> simulated steady-state solar illumination. We find that all three testing methods lead to less power degradation than that in the dark after 96 h so that TOPCon photovoltaic modules will not suffer from severe PID-p risk in short term when running outdoors. After 672 h, the module subjected to PID tests under 800 W/m<sup>2</sup> simulated steady-state solar illumination shows the lowest degradation of −3.18%. This method more closely resembles the long-term outdoor operating conditions, where the module generating voltage under illumination forms a ground potential. Moreover, excessive UV irradiation in the testing method may exacerbate the UV-induced degradation issue and accelerate the aging of the encapsulant.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 19\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500466\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

极化型电位诱导降解(PID-p)已成为隧道氧化钝化接触(TOPCon)太阳能电池组件的一大风险。为了了解模块在室外照明下的长期PID-p降解情况,本研究研究了不同类型和时间的照明对双面EVA封装TOPCon模块PID-p的影响:1)在黑暗中进行多次PID测试,然后进行2 kWh的紫外线恢复;2) 170 W/m2紫外照度下PID测试;3) 800 W/m2模拟稳态太阳照度下的PID测试。我们发现,这三种测试方法在96 h后的功率退化都小于黑暗测试,因此TOPCon光伏组件在户外运行时短期内不会出现严重的PID-p风险。672 h后,在800 W/m2模拟稳态太阳光照下进行PID测试,模块的最低退化率为- 3.18%。这种方法更类似于长期的室外工作条件,模块在照明下产生电压形成地电位。此外,测试方法中过度的紫外线照射可能会加剧紫外线诱导的降解问题,加速封装剂的老化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Methodologies for Assessment of Long-Term Potential-Induced Degradation of Double-Glass Tunnel Oxide Passivated Contact Photovoltaic Modules

On Methodologies for Assessment of Long-Term Potential-Induced Degradation of Double-Glass Tunnel Oxide Passivated Contact Photovoltaic Modules

Polarization-type potential-induced degradation (PID-p) has become a risk for tunnel oxide passivated contact (TOPCon) solar cell modules. For the sake of intimating the long-term PID-p degradation of the modules under outdoor illumination, this study investigates the impact of different types and timing of illumination on the PID-p on the double-sided EVA encapsulated TOPCon modules: 1) multiple cycles of a PID test in the dark followed by a 2 kWh UV recovery; 2) PID tests under 170 W/m2 UV illumination; and 3) PID tests under 800 W/m2 simulated steady-state solar illumination. We find that all three testing methods lead to less power degradation than that in the dark after 96 h so that TOPCon photovoltaic modules will not suffer from severe PID-p risk in short term when running outdoors. After 672 h, the module subjected to PID tests under 800 W/m2 simulated steady-state solar illumination shows the lowest degradation of −3.18%. This method more closely resembles the long-term outdoor operating conditions, where the module generating voltage under illumination forms a ground potential. Moreover, excessive UV irradiation in the testing method may exacerbate the UV-induced degradation issue and accelerate the aging of the encapsulant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信