{"title":"淬硬42CrMo钢清洁超声振动复合钻孔工艺的钻孔性能及表面完整性","authors":"Wei Li, Guangming Zheng, Xiuli Jiang, Jinhao Ma, Xiang Cheng, Enzhao Cui, Xianhai Yang","doi":"10.1002/srin.202400928","DOIUrl":null,"url":null,"abstract":"<p>42CrMo steel has high strength, good toughness, and other excellent mechanical properties, making it the preferred material for gear, drive shaft, and other key components. However, after heat treatment of such materials, there will still be serious machining problems during the drilling process. Herein, the clean ultrasonic vibration hybrid drilling process, which combines ultrasonic vibration technology with clean cutting technology (using media such as dry, liquid nitrogen (LN<sub>2</sub>), cold air, and minimum quantity lubrication (MQL)), is used to investigate the drilling performance and surface integrity of 42CrMo steel. The results show that both cutting force and cutting temperature are reduced under low temperature and MQL conditions compared to dry conditions. At the same time, a notable extension of tool life is obtained under these drilling conditions. MQL demonstrates effective cooling and lubrication properties, enhancing the chip-breaking ability of ultrasonic vibration. In comparison to ultrasonic-assisted drilling (UAD) (dry) conditions, the surface roughness under UAD (MQL) conditions is decreased by 45%, while the maximum microhardness is increased by 13%. The drilling accuracy is significantly improved. Consequently, UAD (MQL) can remarkably improve the hard drilling performance and surface integrity of 42CrMo steel.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 10","pages":"135-147"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drilling Performance and Surface Integrity of Hardened 42CrMo Steel in Clean Ultrasonic Vibration Hybrid Drilling Process\",\"authors\":\"Wei Li, Guangming Zheng, Xiuli Jiang, Jinhao Ma, Xiang Cheng, Enzhao Cui, Xianhai Yang\",\"doi\":\"10.1002/srin.202400928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>42CrMo steel has high strength, good toughness, and other excellent mechanical properties, making it the preferred material for gear, drive shaft, and other key components. However, after heat treatment of such materials, there will still be serious machining problems during the drilling process. Herein, the clean ultrasonic vibration hybrid drilling process, which combines ultrasonic vibration technology with clean cutting technology (using media such as dry, liquid nitrogen (LN<sub>2</sub>), cold air, and minimum quantity lubrication (MQL)), is used to investigate the drilling performance and surface integrity of 42CrMo steel. The results show that both cutting force and cutting temperature are reduced under low temperature and MQL conditions compared to dry conditions. At the same time, a notable extension of tool life is obtained under these drilling conditions. MQL demonstrates effective cooling and lubrication properties, enhancing the chip-breaking ability of ultrasonic vibration. In comparison to ultrasonic-assisted drilling (UAD) (dry) conditions, the surface roughness under UAD (MQL) conditions is decreased by 45%, while the maximum microhardness is increased by 13%. The drilling accuracy is significantly improved. Consequently, UAD (MQL) can remarkably improve the hard drilling performance and surface integrity of 42CrMo steel.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"96 10\",\"pages\":\"135-147\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400928\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400928","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Drilling Performance and Surface Integrity of Hardened 42CrMo Steel in Clean Ultrasonic Vibration Hybrid Drilling Process
42CrMo steel has high strength, good toughness, and other excellent mechanical properties, making it the preferred material for gear, drive shaft, and other key components. However, after heat treatment of such materials, there will still be serious machining problems during the drilling process. Herein, the clean ultrasonic vibration hybrid drilling process, which combines ultrasonic vibration technology with clean cutting technology (using media such as dry, liquid nitrogen (LN2), cold air, and minimum quantity lubrication (MQL)), is used to investigate the drilling performance and surface integrity of 42CrMo steel. The results show that both cutting force and cutting temperature are reduced under low temperature and MQL conditions compared to dry conditions. At the same time, a notable extension of tool life is obtained under these drilling conditions. MQL demonstrates effective cooling and lubrication properties, enhancing the chip-breaking ability of ultrasonic vibration. In comparison to ultrasonic-assisted drilling (UAD) (dry) conditions, the surface roughness under UAD (MQL) conditions is decreased by 45%, while the maximum microhardness is increased by 13%. The drilling accuracy is significantly improved. Consequently, UAD (MQL) can remarkably improve the hard drilling performance and surface integrity of 42CrMo steel.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming