Xian-Juan Feng, Alim Ormeci, Yurii Prots, Matej Bobnar, Ulrich Burkhardt, Marcus Schmidt, Mitja Krnel, Bodo Böhme, Frank. R. Wagner, Michael Baitinger, Ulrich Schwarz
{"title":"层状Zintl相Li2ZnSi中过渡金属重定位导致板坯旋转","authors":"Xian-Juan Feng, Alim Ormeci, Yurii Prots, Matej Bobnar, Ulrich Burkhardt, Marcus Schmidt, Mitja Krnel, Bodo Böhme, Frank. R. Wagner, Michael Baitinger, Ulrich Schwarz","doi":"10.1002/ejic.202500276","DOIUrl":null,"url":null,"abstract":"<p>The layered Zintl phase Li<sub>2</sub>ZnSi is a structural analog of intercalated graphite with hexagonal layers of Zn and Si atoms separated by Li atoms (space group <i>P</i>6<sub>3</sub>/<i>mmc</i>, <i>a</i> = 4.2458(2) Å, <i>c</i> = 8.224(1) Å). Single-crystal X-ray diffraction reveals Zn relocation into the center of the Zn<sub>3</sub>Si<sub>3</sub> rings in 4% of the hexagonal layers. The Zn relocation is coupled with Li migration. The resulting 2D defects can be modeled either as 60° slab rotations or, alternatively, as layer translations by <i><b>k</b></i> = 1/3 [1,−1,0]. Li<sub>2</sub>ZnSi shows metal-type electrical resistivity (ρ = 1.18 μΩ m at 300 K) and exhibits significantly enhanced diamagnetism, suggesting orbital contributions akin to those in graphite. This study demonstrates transition-metal mobility in a layered Zintl phase, generating localized 2D defects that leave the local coordination of each atom unchanged. This mechanism is relevant for understanding defect tolerance in structurally related electrode materials.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 27","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202500276","citationCount":"0","resultStr":"{\"title\":\"Slab Rotation by Transition-Metal Relocation in the Layered Zintl Phase Li2ZnSi\",\"authors\":\"Xian-Juan Feng, Alim Ormeci, Yurii Prots, Matej Bobnar, Ulrich Burkhardt, Marcus Schmidt, Mitja Krnel, Bodo Böhme, Frank. R. Wagner, Michael Baitinger, Ulrich Schwarz\",\"doi\":\"10.1002/ejic.202500276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The layered Zintl phase Li<sub>2</sub>ZnSi is a structural analog of intercalated graphite with hexagonal layers of Zn and Si atoms separated by Li atoms (space group <i>P</i>6<sub>3</sub>/<i>mmc</i>, <i>a</i> = 4.2458(2) Å, <i>c</i> = 8.224(1) Å). Single-crystal X-ray diffraction reveals Zn relocation into the center of the Zn<sub>3</sub>Si<sub>3</sub> rings in 4% of the hexagonal layers. The Zn relocation is coupled with Li migration. The resulting 2D defects can be modeled either as 60° slab rotations or, alternatively, as layer translations by <i><b>k</b></i> = 1/3 [1,−1,0]. Li<sub>2</sub>ZnSi shows metal-type electrical resistivity (ρ = 1.18 μΩ m at 300 K) and exhibits significantly enhanced diamagnetism, suggesting orbital contributions akin to those in graphite. This study demonstrates transition-metal mobility in a layered Zintl phase, generating localized 2D defects that leave the local coordination of each atom unchanged. This mechanism is relevant for understanding defect tolerance in structurally related electrode materials.</p>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":\"28 27\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202500276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.202500276\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.202500276","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
层状Zintl相Li2ZnSi是一种类似于插层石墨的结构,具有由Li原子分隔的Zn和Si原子的六边形层(空间群P63/mmc, a = 4.2458(2) Å, c = 8.224(1) Å)。单晶x射线衍射显示,在4%的六方层中,Zn重新定位到Zn3Si3环的中心。Zn迁移与Li迁移是耦合的。由此产生的2D缺陷既可以建模为60°板旋转,也可以建模为k = 1/3的层平移[1,−1,0]。Li2ZnSi表现出金属型电阻率(ρ = 1.18 μΩ m,在300 K时),并表现出显著增强的抗磁性,表明与石墨相似的轨道贡献。该研究证明了层状Zintl相中的过渡金属迁移性,产生局部2D缺陷,使每个原子的局部配位不变。这一机制有助于理解结构相关电极材料的缺陷容限。
Slab Rotation by Transition-Metal Relocation in the Layered Zintl Phase Li2ZnSi
The layered Zintl phase Li2ZnSi is a structural analog of intercalated graphite with hexagonal layers of Zn and Si atoms separated by Li atoms (space group P63/mmc, a = 4.2458(2) Å, c = 8.224(1) Å). Single-crystal X-ray diffraction reveals Zn relocation into the center of the Zn3Si3 rings in 4% of the hexagonal layers. The Zn relocation is coupled with Li migration. The resulting 2D defects can be modeled either as 60° slab rotations or, alternatively, as layer translations by k = 1/3 [1,−1,0]. Li2ZnSi shows metal-type electrical resistivity (ρ = 1.18 μΩ m at 300 K) and exhibits significantly enhanced diamagnetism, suggesting orbital contributions akin to those in graphite. This study demonstrates transition-metal mobility in a layered Zintl phase, generating localized 2D defects that leave the local coordination of each atom unchanged. This mechanism is relevant for understanding defect tolerance in structurally related electrode materials.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.