封闭平流环境中延迟扩散单物种模型的时空动力学

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Shixia Xin, Hongying Shu, Hua Nie
{"title":"封闭平流环境中延迟扩散单物种模型的时空动力学","authors":"Shixia Xin,&nbsp;Hongying Shu,&nbsp;Hua Nie","doi":"10.1111/sapm.70122","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We investigate the spatiotemporal dynamics of a single-species diffusive model incorporating maturation delay in closed advective heterogeneous environments. First, we establish the well-posedness of the system and prove the existence and uniqueness of the nonconstant positive steady state. Subsequently, we analyze the local stability of the unique nonconstant positive steady state and demonstrate the occurrence of Hopf bifurcation through the corresponding eigenvalue problem. By utilizing a weighted inner product parameterized by the advection rate, we further characterize the stability and direction of the Hopf bifurcation. Finally, we examine how advection rate and spatial length influence the first Hopf bifurcation value, revealing their effects on system dynamics. Our results demonstrate that both advection and spatial scale can either enhance or suppress the likelihood of Hopf bifurcation, depending on the spatial heterogeneity of the intrinsic growth rate.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Dynamics of a Delayed Diffusive Single-Species Model in Closed Advective Environments\",\"authors\":\"Shixia Xin,&nbsp;Hongying Shu,&nbsp;Hua Nie\",\"doi\":\"10.1111/sapm.70122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We investigate the spatiotemporal dynamics of a single-species diffusive model incorporating maturation delay in closed advective heterogeneous environments. First, we establish the well-posedness of the system and prove the existence and uniqueness of the nonconstant positive steady state. Subsequently, we analyze the local stability of the unique nonconstant positive steady state and demonstrate the occurrence of Hopf bifurcation through the corresponding eigenvalue problem. By utilizing a weighted inner product parameterized by the advection rate, we further characterize the stability and direction of the Hopf bifurcation. Finally, we examine how advection rate and spatial length influence the first Hopf bifurcation value, revealing their effects on system dynamics. Our results demonstrate that both advection and spatial scale can either enhance or suppress the likelihood of Hopf bifurcation, depending on the spatial heterogeneity of the intrinsic growth rate.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了封闭平流异质环境中包含成熟延迟的单物种扩散模型的时空动力学。首先,我们建立了系统的适定性,证明了非常正稳态的存在唯一性。随后,我们分析了唯一非常正稳态的局部稳定性,并通过相应的特征值问题证明了Hopf分岔的存在。利用平流率参数化的加权内积,进一步刻画了Hopf分岔的稳定性和方向。最后,我们研究了平流速率和空间长度对第一Hopf分岔值的影响,揭示了它们对系统动力学的影响。我们的研究结果表明,平流和空间尺度可以增强或抑制Hopf分岔的可能性,这取决于内在增长率的空间异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatiotemporal Dynamics of a Delayed Diffusive Single-Species Model in Closed Advective Environments

Spatiotemporal Dynamics of a Delayed Diffusive Single-Species Model in Closed Advective Environments

We investigate the spatiotemporal dynamics of a single-species diffusive model incorporating maturation delay in closed advective heterogeneous environments. First, we establish the well-posedness of the system and prove the existence and uniqueness of the nonconstant positive steady state. Subsequently, we analyze the local stability of the unique nonconstant positive steady state and demonstrate the occurrence of Hopf bifurcation through the corresponding eigenvalue problem. By utilizing a weighted inner product parameterized by the advection rate, we further characterize the stability and direction of the Hopf bifurcation. Finally, we examine how advection rate and spatial length influence the first Hopf bifurcation value, revealing their effects on system dynamics. Our results demonstrate that both advection and spatial scale can either enhance or suppress the likelihood of Hopf bifurcation, depending on the spatial heterogeneity of the intrinsic growth rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信