氯化苄肼界面工程提高宽带隙钙钛矿串联太阳能电池性能

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-09-02 DOI:10.1002/solr.202500478
Yixiang Yu, Gang Xu, Tao Zhang, Zehang Liu, Yuzhou Wu, Xinquan Wang, Qingquan He
{"title":"氯化苄肼界面工程提高宽带隙钙钛矿串联太阳能电池性能","authors":"Yixiang Yu,&nbsp;Gang Xu,&nbsp;Tao Zhang,&nbsp;Zehang Liu,&nbsp;Yuzhou Wu,&nbsp;Xinquan Wang,&nbsp;Qingquan He","doi":"10.1002/solr.202500478","DOIUrl":null,"url":null,"abstract":"<p>Wide-bandgap (WBG) perovskites have gained great attention as promising top-cell absorbers with the potential of enabling efficient perovskite/crystal silicon tandem solar cells (TSCs). However, defects generated during the deposition of perovskite substantially degrade device performance and operational stability. Here, we demonstrate an interfacial engineering strategy for efficient defect passivation of Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> WBG perovskite (1.68 eV) films based on small organic molecule, benzylhydrazine monohydrochloride (BHC). The BHC, incorporating both primary amine (–NH<sub>2</sub>) and protonated ammonium (–NH<sub>3</sub><sup>+</sup>) functional groups, enables bifunctional synergistic passivation of undercoordinated Pb<sup>2+</sup> and cation vacancies on perovskite surface. This strategy boosts the power conversion efficiency (PCE) of WBG perovskite solar cells from 19.01% to 20.87%, with simultaneous improvements in all photovoltaic parameters including open-circuit voltage, short-circuit current density, and fill factor. Unencapsulated devices retain 80% of initial PCE after 960 h storage under ambient conditions. When integrated into perovskite/silicon TSCs, a PCE of 29.56% is achieved.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzylhydrazinium Chloride Interface Engineering Boosts Performance of Wide-Bandgap Perovskite and Tandem Solar Cells\",\"authors\":\"Yixiang Yu,&nbsp;Gang Xu,&nbsp;Tao Zhang,&nbsp;Zehang Liu,&nbsp;Yuzhou Wu,&nbsp;Xinquan Wang,&nbsp;Qingquan He\",\"doi\":\"10.1002/solr.202500478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wide-bandgap (WBG) perovskites have gained great attention as promising top-cell absorbers with the potential of enabling efficient perovskite/crystal silicon tandem solar cells (TSCs). However, defects generated during the deposition of perovskite substantially degrade device performance and operational stability. Here, we demonstrate an interfacial engineering strategy for efficient defect passivation of Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> WBG perovskite (1.68 eV) films based on small organic molecule, benzylhydrazine monohydrochloride (BHC). The BHC, incorporating both primary amine (–NH<sub>2</sub>) and protonated ammonium (–NH<sub>3</sub><sup>+</sup>) functional groups, enables bifunctional synergistic passivation of undercoordinated Pb<sup>2+</sup> and cation vacancies on perovskite surface. This strategy boosts the power conversion efficiency (PCE) of WBG perovskite solar cells from 19.01% to 20.87%, with simultaneous improvements in all photovoltaic parameters including open-circuit voltage, short-circuit current density, and fill factor. Unencapsulated devices retain 80% of initial PCE after 960 h storage under ambient conditions. When integrated into perovskite/silicon TSCs, a PCE of 29.56% is achieved.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 19\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500478\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500478","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

宽禁带钙钛矿(WBG)作为一种极具潜力的顶层电池吸收剂,具有实现高效钙钛矿/晶体硅串联太阳能电池(TSCs)的潜力,受到了广泛的关注。然而,钙钛矿沉积过程中产生的缺陷大大降低了器件的性能和运行稳定性。本文研究了基于有机小分子单盐酸苄肼(BHC)的Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 WBG钙钛矿(1.68 eV)薄膜的界面工程策略。BHC结合伯胺(-NH2)和质子化铵(-NH3 +)官能团,实现了钙钛矿表面Pb2+和阳离子空位的双功能协同钝化。该策略将WBG钙钛矿太阳能电池的功率转换效率(PCE)从19.01%提高到20.87%,同时改善了包括开路电压、短路电流密度和填充因子在内的所有光伏参数。未封装的设备在环境条件下储存960小时后保留80%的初始PCE。当集成到钙钛矿/硅tsc中时,PCE达到29.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benzylhydrazinium Chloride Interface Engineering Boosts Performance of Wide-Bandgap Perovskite and Tandem Solar Cells

Benzylhydrazinium Chloride Interface Engineering Boosts Performance of Wide-Bandgap Perovskite and Tandem Solar Cells

Wide-bandgap (WBG) perovskites have gained great attention as promising top-cell absorbers with the potential of enabling efficient perovskite/crystal silicon tandem solar cells (TSCs). However, defects generated during the deposition of perovskite substantially degrade device performance and operational stability. Here, we demonstrate an interfacial engineering strategy for efficient defect passivation of Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 WBG perovskite (1.68 eV) films based on small organic molecule, benzylhydrazine monohydrochloride (BHC). The BHC, incorporating both primary amine (–NH2) and protonated ammonium (–NH3+) functional groups, enables bifunctional synergistic passivation of undercoordinated Pb2+ and cation vacancies on perovskite surface. This strategy boosts the power conversion efficiency (PCE) of WBG perovskite solar cells from 19.01% to 20.87%, with simultaneous improvements in all photovoltaic parameters including open-circuit voltage, short-circuit current density, and fill factor. Unencapsulated devices retain 80% of initial PCE after 960 h storage under ambient conditions. When integrated into perovskite/silicon TSCs, a PCE of 29.56% is achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信