烧结前金纳米颗粒的纳米到宏观转变

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Paige Summers, Alexander Angeloski, Michael B. Cortie, Richard Wuhrer, Andrew M. McDonagh
{"title":"烧结前金纳米颗粒的纳米到宏观转变","authors":"Paige Summers,&nbsp;Alexander Angeloski,&nbsp;Michael B. Cortie,&nbsp;Richard Wuhrer,&nbsp;Andrew M. McDonagh","doi":"10.1007/s10854-025-15854-0","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal behaviour of ligand-stabilised gold nanoparticles (AuNPs) is an important consideration when using these materials to form gold films via sintering. AuNPs stabilised with butanethiol and hexadecanethiol ligands displayed quite different properties upon heating up to their sintering temperatures. Films of AuNPs bearing the longer chain stabilising ligand hexadecanethiol become liquids at 56 °C. This temperature corresponds to the melting point of dihexadecyl disulfide, a known product that forms when such AuNPs are heated. No liquid phase was observed for butanethiol-stabilised AuNPs at any temperature. Films of the hexadecanethiol-stabilised AuNPs had high resistances (&gt; 100 MΩ) at room temperature and the short-chain butanethiol-stabilised AuNPs had resistances in the kΩ range. Small-angle X-ray scattering data showed that the butanethiol-stabilised AuNPs begin to coarsen at ~ 140 °C whilst the hexadecanethiol particles began to coarsen ~ 90 °C.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 28","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-025-15854-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Nano to macro transition of gold nanoparticles prior to sintering\",\"authors\":\"Paige Summers,&nbsp;Alexander Angeloski,&nbsp;Michael B. Cortie,&nbsp;Richard Wuhrer,&nbsp;Andrew M. McDonagh\",\"doi\":\"10.1007/s10854-025-15854-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal behaviour of ligand-stabilised gold nanoparticles (AuNPs) is an important consideration when using these materials to form gold films via sintering. AuNPs stabilised with butanethiol and hexadecanethiol ligands displayed quite different properties upon heating up to their sintering temperatures. Films of AuNPs bearing the longer chain stabilising ligand hexadecanethiol become liquids at 56 °C. This temperature corresponds to the melting point of dihexadecyl disulfide, a known product that forms when such AuNPs are heated. No liquid phase was observed for butanethiol-stabilised AuNPs at any temperature. Films of the hexadecanethiol-stabilised AuNPs had high resistances (&gt; 100 MΩ) at room temperature and the short-chain butanethiol-stabilised AuNPs had resistances in the kΩ range. Small-angle X-ray scattering data showed that the butanethiol-stabilised AuNPs begin to coarsen at ~ 140 °C whilst the hexadecanethiol particles began to coarsen ~ 90 °C.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 28\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-025-15854-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15854-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15854-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

当使用这些材料通过烧结形成金膜时,配体稳定金纳米颗粒(AuNPs)的热行为是一个重要的考虑因素。用丁硫醇和十六硫醇配体稳定的AuNPs在加热到烧结温度时表现出完全不同的性质。含有长链稳定配体十六烷硫醇的AuNPs薄膜在56°C时变成液体。这个温度对应于二十六进基二硫化物的熔点,这是一种已知的产物,当这种aunp被加热时形成。丁硫醇稳定的AuNPs在任何温度下均未观察到液相。十六烷基硫醇稳定的AuNPs薄膜在室温下具有高电阻(> 100 MΩ),而短链丁烷硫醇稳定的AuNPs具有kΩ范围内的电阻。小角度x射线散射数据表明,丁硫醇稳定的AuNPs在~ 140℃开始变粗,而十六硫醇颗粒在~ 90℃开始变粗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano to macro transition of gold nanoparticles prior to sintering

The thermal behaviour of ligand-stabilised gold nanoparticles (AuNPs) is an important consideration when using these materials to form gold films via sintering. AuNPs stabilised with butanethiol and hexadecanethiol ligands displayed quite different properties upon heating up to their sintering temperatures. Films of AuNPs bearing the longer chain stabilising ligand hexadecanethiol become liquids at 56 °C. This temperature corresponds to the melting point of dihexadecyl disulfide, a known product that forms when such AuNPs are heated. No liquid phase was observed for butanethiol-stabilised AuNPs at any temperature. Films of the hexadecanethiol-stabilised AuNPs had high resistances (> 100 MΩ) at room temperature and the short-chain butanethiol-stabilised AuNPs had resistances in the kΩ range. Small-angle X-ray scattering data showed that the butanethiol-stabilised AuNPs begin to coarsen at ~ 140 °C whilst the hexadecanethiol particles began to coarsen ~ 90 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信