一种新型复合微波烧结方法研究sinzro2增强铝复合材料的力学响应

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
Korvi Pullaiah, A. Hemantha Kumar
{"title":"一种新型复合微波烧结方法研究sinzro2增强铝复合材料的力学响应","authors":"Korvi Pullaiah,&nbsp;A. Hemantha Kumar","doi":"10.1007/s11182-025-03531-y","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the mechanical behavior of AA7075-based hybrid metal matrix composites reinforced with silicon nitride (SiN) and zirconium dioxide (ZrO<sub>2</sub>), fabricated by a novel hybrid microwave sintering technique. Composites are developed with the constant SiN content of 7 wt.% and the ZrO<sub>2</sub> content varying between 1 and 4 wt.% to understand the influence of dual-phase ceramic reinforcement. The microstructural analysis shows a uniform dispersion of reinforcement at a lower ZrO<sub>2</sub> content, contributing to the improved tensile strength and hardness through such mechanisms as the load transfer, Orowan looping, and grain refinement. The composite reinforced with 7 wt.% SiN and 3 wt.% ZrO<sub>2</sub> demonstrates the best mechanical performance, achieving a 202 MPa tensile strength and 116 HV hardness. However, the impact strength decreases with increasing ZrO<sub>2</sub> content, reaching the maximum of only 10.25 J at 1 wt.% and dropping to 9.72 J at 4 wt.%. The X‑ray diffraction analysis confirms the formation of the brittle Al<sub>4</sub>C<sub>3</sub> phase at 4 wt.% ZrO<sub>2</sub>, which, despite the presence of thermally stable Al<sub>3</sub>Zr, contributes to a decline in mechanical properties. Furthermore, microstructural defects such as agglomeration and pore formation at higher ZrO<sub>2</sub> contents act as crack initiation sites. This study confirms that hybrid microwave sintering, when optimized with suitable reinforcement levels, is a promising technique for fabricating lightweight, high-strength aluminum composites for advanced engineering applications.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"68 7","pages":"1065 - 1071"},"PeriodicalIF":0.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the mechanical response of aluminum composites reinforced with SiN and ZrO2: a novel hybrid microwave sintering approach\",\"authors\":\"Korvi Pullaiah,&nbsp;A. Hemantha Kumar\",\"doi\":\"10.1007/s11182-025-03531-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study investigates the mechanical behavior of AA7075-based hybrid metal matrix composites reinforced with silicon nitride (SiN) and zirconium dioxide (ZrO<sub>2</sub>), fabricated by a novel hybrid microwave sintering technique. Composites are developed with the constant SiN content of 7 wt.% and the ZrO<sub>2</sub> content varying between 1 and 4 wt.% to understand the influence of dual-phase ceramic reinforcement. The microstructural analysis shows a uniform dispersion of reinforcement at a lower ZrO<sub>2</sub> content, contributing to the improved tensile strength and hardness through such mechanisms as the load transfer, Orowan looping, and grain refinement. The composite reinforced with 7 wt.% SiN and 3 wt.% ZrO<sub>2</sub> demonstrates the best mechanical performance, achieving a 202 MPa tensile strength and 116 HV hardness. However, the impact strength decreases with increasing ZrO<sub>2</sub> content, reaching the maximum of only 10.25 J at 1 wt.% and dropping to 9.72 J at 4 wt.%. The X‑ray diffraction analysis confirms the formation of the brittle Al<sub>4</sub>C<sub>3</sub> phase at 4 wt.% ZrO<sub>2</sub>, which, despite the presence of thermally stable Al<sub>3</sub>Zr, contributes to a decline in mechanical properties. Furthermore, microstructural defects such as agglomeration and pore formation at higher ZrO<sub>2</sub> contents act as crack initiation sites. This study confirms that hybrid microwave sintering, when optimized with suitable reinforcement levels, is a promising technique for fabricating lightweight, high-strength aluminum composites for advanced engineering applications.</p></div>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"68 7\",\"pages\":\"1065 - 1071\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-025-03531-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-025-03531-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于aa7075的氮化硅(SiN)和二氧化锆(ZrO2)复合材料的力学性能。制备了含sin7 wt不变的复合材料。%和ZrO2含量在1和4之间变化 wt。%来了解双相陶瓷增强的影响。显微组织分析表明,在较低ZrO2含量下,增强体分散均匀,通过载荷传递、Orowan循环和晶粒细化等机制提高了材料的抗拉强度和硬度。7 wt增强复合材料。% SiN和3 wt。ZrO2表现出最佳的力学性能,抗拉强度为202 MPa,硬度为116 HV。冲击强度随ZrO2含量的增加而降低,在1 wt时达到最大值,仅为10.25 J。%和下降到9.72 J在4 wt.%。X射线衍射分析证实在4 wt处形成了脆性Al4C3相。% ZrO2,尽管存在热稳定的Al3Zr,但它导致机械性能下降。此外,高ZrO2含量下的结块和孔隙形成等微观结构缺陷是裂纹的起裂部位。该研究证实,混合微波烧结在优化合适的增强水平时,是一种很有前途的技术,可用于制造轻型,高强度的铝复合材料,用于先进的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the mechanical response of aluminum composites reinforced with SiN and ZrO2: a novel hybrid microwave sintering approach

The present study investigates the mechanical behavior of AA7075-based hybrid metal matrix composites reinforced with silicon nitride (SiN) and zirconium dioxide (ZrO2), fabricated by a novel hybrid microwave sintering technique. Composites are developed with the constant SiN content of 7 wt.% and the ZrO2 content varying between 1 and 4 wt.% to understand the influence of dual-phase ceramic reinforcement. The microstructural analysis shows a uniform dispersion of reinforcement at a lower ZrO2 content, contributing to the improved tensile strength and hardness through such mechanisms as the load transfer, Orowan looping, and grain refinement. The composite reinforced with 7 wt.% SiN and 3 wt.% ZrO2 demonstrates the best mechanical performance, achieving a 202 MPa tensile strength and 116 HV hardness. However, the impact strength decreases with increasing ZrO2 content, reaching the maximum of only 10.25 J at 1 wt.% and dropping to 9.72 J at 4 wt.%. The X‑ray diffraction analysis confirms the formation of the brittle Al4C3 phase at 4 wt.% ZrO2, which, despite the presence of thermally stable Al3Zr, contributes to a decline in mechanical properties. Furthermore, microstructural defects such as agglomeration and pore formation at higher ZrO2 contents act as crack initiation sites. This study confirms that hybrid microwave sintering, when optimized with suitable reinforcement levels, is a promising technique for fabricating lightweight, high-strength aluminum composites for advanced engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信