光催化溶解纤维素用于氢和纳米纤维生产:通过实验和信息学揭示关键因素

IF 4.9
Atsushi Kobayashi, Atsushi Miura and Keisuke Takahashi
{"title":"光催化溶解纤维素用于氢和纳米纤维生产:通过实验和信息学揭示关键因素","authors":"Atsushi Kobayashi, Atsushi Miura and Keisuke Takahashi","doi":"10.1039/D5SU00054H","DOIUrl":null,"url":null,"abstract":"<p >The efficient utilization of biomass resources and solar energy is necessary for next-generation sustainable carbon-neutral societies. Although cellulose is the most abundant biomass on Earth, its utilization as a carbon resource is hampered by its strongly stabilized polymer-bundled structure. In this study, a new photoredox cascade catalyst (<strong>PRCC</strong>) conversion system was developed by combining dual-dye-sensitized Pt-cocatalyst-loaded TiO<small><sub>2</sub></small> nanoparticle photocatalysts (<strong>DDSP</strong>s) and a 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation catalyst for the production of cellulose nanofibers and hydrogen from various cellulose substrates (powder, paper, sponge, and wood pellets) under blue light irradiation without the use of strong acids/bases. UV-vis absorption and emission spectroscopy revealed that the loaded amount of the Ru(<small>II</small>) dye on the TiO<small><sub>2</sub></small> surface was successfully controlled in the range of 353–667 nmol/1 mg TiO<small><sub>2</sub></small>, and the immobilization order of two Ru(<small>II</small>) dyes significantly affected the energy- and electron-transfer behaviors between the Ru(<small>II</small>) dyes and TiO<small><sub>2</sub></small> nanoparticles. Our systematic evaluation of the photocatalytic activity and machine learning analysis of 12 different <strong>DDSP</strong>s revealed that the immobilization order of the two Ru(<small>II</small>) dyes, full coverage of the TiO<small><sub>2</sub></small> nanoparticle surface with suitable Ru(<small>II</small>) dye molecules, and Zr<small><sup>4+</sup></small> cation loading are crucial factors for achieving a high apparent quantum yield for the hydrogen-evolving <strong>PRCC</strong> conversion of cellulose to nanofibers (max. 1.62% at 467 nm excitation for the initial 1 h of reaction in a 0.3 M cellulose aqueous dispersion). The findings contribute to the development of an environmentally benign photocatalytic approach for the conversion of cellulosic biomass as a carbon resource into valuable organic products.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 4688-4702"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00054h?page=search","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic dissolution of cellulose for hydrogen and nanofiber production: unveiling crucial factors via experiments and informatics\",\"authors\":\"Atsushi Kobayashi, Atsushi Miura and Keisuke Takahashi\",\"doi\":\"10.1039/D5SU00054H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The efficient utilization of biomass resources and solar energy is necessary for next-generation sustainable carbon-neutral societies. Although cellulose is the most abundant biomass on Earth, its utilization as a carbon resource is hampered by its strongly stabilized polymer-bundled structure. In this study, a new photoredox cascade catalyst (<strong>PRCC</strong>) conversion system was developed by combining dual-dye-sensitized Pt-cocatalyst-loaded TiO<small><sub>2</sub></small> nanoparticle photocatalysts (<strong>DDSP</strong>s) and a 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation catalyst for the production of cellulose nanofibers and hydrogen from various cellulose substrates (powder, paper, sponge, and wood pellets) under blue light irradiation without the use of strong acids/bases. UV-vis absorption and emission spectroscopy revealed that the loaded amount of the Ru(<small>II</small>) dye on the TiO<small><sub>2</sub></small> surface was successfully controlled in the range of 353–667 nmol/1 mg TiO<small><sub>2</sub></small>, and the immobilization order of two Ru(<small>II</small>) dyes significantly affected the energy- and electron-transfer behaviors between the Ru(<small>II</small>) dyes and TiO<small><sub>2</sub></small> nanoparticles. Our systematic evaluation of the photocatalytic activity and machine learning analysis of 12 different <strong>DDSP</strong>s revealed that the immobilization order of the two Ru(<small>II</small>) dyes, full coverage of the TiO<small><sub>2</sub></small> nanoparticle surface with suitable Ru(<small>II</small>) dye molecules, and Zr<small><sup>4+</sup></small> cation loading are crucial factors for achieving a high apparent quantum yield for the hydrogen-evolving <strong>PRCC</strong> conversion of cellulose to nanofibers (max. 1.62% at 467 nm excitation for the initial 1 h of reaction in a 0.3 M cellulose aqueous dispersion). The findings contribute to the development of an environmentally benign photocatalytic approach for the conversion of cellulosic biomass as a carbon resource into valuable organic products.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 10\",\"pages\":\" 4688-4702\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00054h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00054h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00054h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物质资源和太阳能的有效利用是下一代可持续碳中性社会的必要条件。虽然纤维素是地球上最丰富的生物质,但它作为碳资源的利用受到其强稳定聚合物束结构的阻碍。在本研究中,通过双染料敏化pt共催化剂负载TiO2纳米颗粒光催化剂(DDSPs)和2,2,6,6-四甲基哌啶1-氧(TEMPO)氧化催化剂的结合,开发了一种新的光氧化还原级联催化剂(PRCC)转化体系,用于在蓝光照射下,在不使用强酸/碱的情况下,从各种纤维素基质(粉末、纸张、海绵和木球)中生产纤维素纳米纤维和氢。紫外可见吸收和发射光谱结果表明,Ru(II)染料在TiO2表面的负载量被成功控制在353 ~ 667 nmol/1 mg TiO2范围内,两种Ru(II)染料的固定顺序显著影响了Ru(II)染料与TiO2纳米粒子之间的能量和电子转移行为。我们对12种不同ddsp的光催化活性进行了系统评价和机器学习分析,结果表明,两种Ru(II)染料的固定顺序、合适的Ru(II)染料分子在TiO2纳米颗粒表面的完全覆盖以及Zr4+阳离子负载是实现纤维素向纳米纤维的PRCC转化的高表观量子产率的关键因素。在467 nm激发下,在0.3 M的纤维素水分散体中反应1小时,反应率为1.62%。这些发现有助于开发一种环境友好的光催化方法,将纤维素生物质作为碳资源转化为有价值的有机产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic dissolution of cellulose for hydrogen and nanofiber production: unveiling crucial factors via experiments and informatics

Photocatalytic dissolution of cellulose for hydrogen and nanofiber production: unveiling crucial factors via experiments and informatics

The efficient utilization of biomass resources and solar energy is necessary for next-generation sustainable carbon-neutral societies. Although cellulose is the most abundant biomass on Earth, its utilization as a carbon resource is hampered by its strongly stabilized polymer-bundled structure. In this study, a new photoredox cascade catalyst (PRCC) conversion system was developed by combining dual-dye-sensitized Pt-cocatalyst-loaded TiO2 nanoparticle photocatalysts (DDSPs) and a 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation catalyst for the production of cellulose nanofibers and hydrogen from various cellulose substrates (powder, paper, sponge, and wood pellets) under blue light irradiation without the use of strong acids/bases. UV-vis absorption and emission spectroscopy revealed that the loaded amount of the Ru(II) dye on the TiO2 surface was successfully controlled in the range of 353–667 nmol/1 mg TiO2, and the immobilization order of two Ru(II) dyes significantly affected the energy- and electron-transfer behaviors between the Ru(II) dyes and TiO2 nanoparticles. Our systematic evaluation of the photocatalytic activity and machine learning analysis of 12 different DDSPs revealed that the immobilization order of the two Ru(II) dyes, full coverage of the TiO2 nanoparticle surface with suitable Ru(II) dye molecules, and Zr4+ cation loading are crucial factors for achieving a high apparent quantum yield for the hydrogen-evolving PRCC conversion of cellulose to nanofibers (max. 1.62% at 467 nm excitation for the initial 1 h of reaction in a 0.3 M cellulose aqueous dispersion). The findings contribute to the development of an environmentally benign photocatalytic approach for the conversion of cellulosic biomass as a carbon resource into valuable organic products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信