预测有机阳离子转运体OCT1, OCT2和OCT3摄取的新机器学习模型

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-19 DOI:10.1021/acsomega.5c05605
Giovanni Bocci*, , , Neann Mathai, , , Benjamin Suutari, , , Jonathan Harrison, , , Stefanie Speichert, , , Major Gooyit, , , Douglas E. V. Pires, , and , John P. Overington, 
{"title":"预测有机阳离子转运体OCT1, OCT2和OCT3摄取的新机器学习模型","authors":"Giovanni Bocci*,&nbsp;, ,&nbsp;Neann Mathai,&nbsp;, ,&nbsp;Benjamin Suutari,&nbsp;, ,&nbsp;Jonathan Harrison,&nbsp;, ,&nbsp;Stefanie Speichert,&nbsp;, ,&nbsp;Major Gooyit,&nbsp;, ,&nbsp;Douglas E. V. Pires,&nbsp;, and ,&nbsp;John P. Overington,&nbsp;","doi":"10.1021/acsomega.5c05605","DOIUrl":null,"url":null,"abstract":"<p >Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective <i>in silico</i> models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 38","pages":"44190–44200"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c05605","citationCount":"0","resultStr":"{\"title\":\"New Machine Learning Models for Predicting the Organic Cation Transporters OCT1, OCT2, and OCT3 Uptake\",\"authors\":\"Giovanni Bocci*,&nbsp;, ,&nbsp;Neann Mathai,&nbsp;, ,&nbsp;Benjamin Suutari,&nbsp;, ,&nbsp;Jonathan Harrison,&nbsp;, ,&nbsp;Stefanie Speichert,&nbsp;, ,&nbsp;Major Gooyit,&nbsp;, ,&nbsp;Douglas E. V. Pires,&nbsp;, and ,&nbsp;John P. Overington,&nbsp;\",\"doi\":\"10.1021/acsomega.5c05605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective <i>in silico</i> models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 38\",\"pages\":\"44190–44200\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c05605\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c05605\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c05605","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机阳离子转运蛋白(OCTs)是一个小的跨膜蛋白家族,通过促进药物摄取和消除来调节天然代谢物和外源药物的药代动力学(PK)。测量小分子对oct的调制(抑制或底物)需要昂贵的实验。准确预测oct介导摄取的更具成本效益的硅模型将能够在早期阶段预测新候选药物的潜在PK责任。在本文中,我们提出了新的机器学习(ML)模型来预测OCT1, OCT2和OCT3的摄取。这些模型使用先进的决策树集成算法和VolSurf分子特征构建,基于当前文献中最大和最精心策划的数据集。不同外部测试集的几轮验证证实了这些模型的预测能力,马修斯相关系数(MCC)值在0.45以上。我们相信,这些模型将揭示oct对药物发现和开发的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Machine Learning Models for Predicting the Organic Cation Transporters OCT1, OCT2, and OCT3 Uptake

Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective in silico models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信