Giovanni Bocci*, , , Neann Mathai, , , Benjamin Suutari, , , Jonathan Harrison, , , Stefanie Speichert, , , Major Gooyit, , , Douglas E. V. Pires, , and , John P. Overington,
{"title":"预测有机阳离子转运体OCT1, OCT2和OCT3摄取的新机器学习模型","authors":"Giovanni Bocci*, , , Neann Mathai, , , Benjamin Suutari, , , Jonathan Harrison, , , Stefanie Speichert, , , Major Gooyit, , , Douglas E. V. Pires, , and , John P. Overington, ","doi":"10.1021/acsomega.5c05605","DOIUrl":null,"url":null,"abstract":"<p >Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective <i>in silico</i> models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 38","pages":"44190–44200"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c05605","citationCount":"0","resultStr":"{\"title\":\"New Machine Learning Models for Predicting the Organic Cation Transporters OCT1, OCT2, and OCT3 Uptake\",\"authors\":\"Giovanni Bocci*, , , Neann Mathai, , , Benjamin Suutari, , , Jonathan Harrison, , , Stefanie Speichert, , , Major Gooyit, , , Douglas E. V. Pires, , and , John P. Overington, \",\"doi\":\"10.1021/acsomega.5c05605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective <i>in silico</i> models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 38\",\"pages\":\"44190–44200\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c05605\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c05605\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c05605","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New Machine Learning Models for Predicting the Organic Cation Transporters OCT1, OCT2, and OCT3 Uptake
Organic cation transporters (OCTs) are a small family of transmembrane proteins that regulate the pharmacokinetics (PK) of natural metabolites and xenobiotics by facilitating drug uptake and elimination. Measuring the modulation (either inhibition or substrate) of OCTs by small molecules requires expensive experiments. More cost-effective in silico models that accurately predict OCT-mediated uptake would enable the forecasting of potential PK liabilities of new drug candidates at an early stage. In this paper, we present new machine learning (ML) models to predict the uptake of OCT1, OCT2, and OCT3. Built using advanced decision tree ensemble algorithms and VolSurf molecular features, these models are based on the largest and most well-curated data sets available in the current literature. Several rounds of validation with different external test sets have confirmed the predictive power of these models, with Matthews correlation coefficient (MCC) values above 0.45. We believe that these models will shed new light on the impact of OCTs on drug discovery and development.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.