Cu2+ yZn1-ySnSxSe4-x固溶体的立方到四方相变研究

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Marcelo Augusto Malagutti, , , Eleonora Isotta, , , Sebastian Bette, , , Himanshu Nautiyal, , , Binayak Mukherjee, , , Andrea Chiappini, , , Jurgen Smet, , , Carlos Eduardo Maduro Campos, , , Robert Dinnebier, , , Narges Ataollahi, , , Rosa Di Maggio, , and , Paolo Scardi*, 
{"title":"Cu2+ yZn1-ySnSxSe4-x固溶体的立方到四方相变研究","authors":"Marcelo Augusto Malagutti,&nbsp;, ,&nbsp;Eleonora Isotta,&nbsp;, ,&nbsp;Sebastian Bette,&nbsp;, ,&nbsp;Himanshu Nautiyal,&nbsp;, ,&nbsp;Binayak Mukherjee,&nbsp;, ,&nbsp;Andrea Chiappini,&nbsp;, ,&nbsp;Jurgen Smet,&nbsp;, ,&nbsp;Carlos Eduardo Maduro Campos,&nbsp;, ,&nbsp;Robert Dinnebier,&nbsp;, ,&nbsp;Narges Ataollahi,&nbsp;, ,&nbsp;Rosa Di Maggio,&nbsp;, and ,&nbsp;Paolo Scardi*,&nbsp;","doi":"10.1021/acs.cgd.5c00935","DOIUrl":null,"url":null,"abstract":"<p >The Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4–<i>x</i></sub> (0 ≤ <i>x</i> ≤ 4; <i>y</i> = 0, 0.125) system is an earth-abundant, nontoxic chalcogenide with tunable polymorphism and chemical disorder, making it a promising candidate for sustainable thermoelectric and photovoltaic applications. Recent stabilization of cubic sphalerite Cu<sub>2</sub>ZnSnS<sub>4</sub> and Cu<sub>2</sub>ZnSnSe<sub>4</sub> via mechanochemical synthesis has demonstrated enhanced thermoelectric performance attributed to low-energy optical phonon modes and topological conduction pathways for charge carriers. In this study, we explore the role of anion substitution and Cu-induced Cu<sub>Zn</sub> antisite disorder in stabilizing the cubic phase and driving its transformation to the partially disordered tetragonal kesterite structure at high temperature. A combination of X-ray diffraction, Raman spectroscopy, and first-principles simulations (DFT, DFPT, AIMD) reveals that Cu-rich compositions deviate from Vegard’s law, show increased stacking fault density, and exhibit pronounced distortion in the tetrahedral motifs. AIMD results indicate that the higher symmetry of the cubic phase permits a broad distribution of tetrahedral configurations, stabilizing disorder and stacking faults. Upon thermal activation, entropy favors the emergence of more stable S/Se–Cu<sub>3</sub>Sn, S/Se–Cu<sub>2</sub>ZnSn, and S/Se–CuZn<sub>2</sub>Sn motifs, stabilizing the kesterite phase with a reduced quantity of microstructural defects. Notably, in compositions close to Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub>2</sub>Se<sub>2</sub>, classified as high-entropy alloys, Baur bond and angle distortions peak, suggesting structural robustness despite high defect concentrations. This work provides a fundamental understanding of microstructural disorder from the atomic motif level, offering valuable guidelines for tuning phase stability and properties in Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4–<i>x</i></sub> kesterite and sphalerite materials.</p><p >This study explores how anion substitution and Cu-induced disorder govern phase stability in Cu<sub>2+<i>y</i></sub>Zn<sub>1−<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4−<i>x</i></sub> chalcogenides, combining diffraction, spectroscopy, and first-principles simulations. Results show that cubic sphalerite is stabilized by antisite disorder and stacking faults, while thermal activation promotes ordered kesterite motifs with fewer defects. These insights clarify the disorder−stability relationship, guiding the design of sustainable thermoelectric and photovoltaic materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 19","pages":"8133–8146"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.5c00935","citationCount":"0","resultStr":"{\"title\":\"Investigating the Cubic-to-Tetragonal Phase Transition of Cu2+yZn1–ySnSxSe4–x Solid Solutions\",\"authors\":\"Marcelo Augusto Malagutti,&nbsp;, ,&nbsp;Eleonora Isotta,&nbsp;, ,&nbsp;Sebastian Bette,&nbsp;, ,&nbsp;Himanshu Nautiyal,&nbsp;, ,&nbsp;Binayak Mukherjee,&nbsp;, ,&nbsp;Andrea Chiappini,&nbsp;, ,&nbsp;Jurgen Smet,&nbsp;, ,&nbsp;Carlos Eduardo Maduro Campos,&nbsp;, ,&nbsp;Robert Dinnebier,&nbsp;, ,&nbsp;Narges Ataollahi,&nbsp;, ,&nbsp;Rosa Di Maggio,&nbsp;, and ,&nbsp;Paolo Scardi*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c00935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4–<i>x</i></sub> (0 ≤ <i>x</i> ≤ 4; <i>y</i> = 0, 0.125) system is an earth-abundant, nontoxic chalcogenide with tunable polymorphism and chemical disorder, making it a promising candidate for sustainable thermoelectric and photovoltaic applications. Recent stabilization of cubic sphalerite Cu<sub>2</sub>ZnSnS<sub>4</sub> and Cu<sub>2</sub>ZnSnSe<sub>4</sub> via mechanochemical synthesis has demonstrated enhanced thermoelectric performance attributed to low-energy optical phonon modes and topological conduction pathways for charge carriers. In this study, we explore the role of anion substitution and Cu-induced Cu<sub>Zn</sub> antisite disorder in stabilizing the cubic phase and driving its transformation to the partially disordered tetragonal kesterite structure at high temperature. A combination of X-ray diffraction, Raman spectroscopy, and first-principles simulations (DFT, DFPT, AIMD) reveals that Cu-rich compositions deviate from Vegard’s law, show increased stacking fault density, and exhibit pronounced distortion in the tetrahedral motifs. AIMD results indicate that the higher symmetry of the cubic phase permits a broad distribution of tetrahedral configurations, stabilizing disorder and stacking faults. Upon thermal activation, entropy favors the emergence of more stable S/Se–Cu<sub>3</sub>Sn, S/Se–Cu<sub>2</sub>ZnSn, and S/Se–CuZn<sub>2</sub>Sn motifs, stabilizing the kesterite phase with a reduced quantity of microstructural defects. Notably, in compositions close to Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub>2</sub>Se<sub>2</sub>, classified as high-entropy alloys, Baur bond and angle distortions peak, suggesting structural robustness despite high defect concentrations. This work provides a fundamental understanding of microstructural disorder from the atomic motif level, offering valuable guidelines for tuning phase stability and properties in Cu<sub>2+<i>y</i></sub>Zn<sub>1–<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4–<i>x</i></sub> kesterite and sphalerite materials.</p><p >This study explores how anion substitution and Cu-induced disorder govern phase stability in Cu<sub>2+<i>y</i></sub>Zn<sub>1−<i>y</i></sub>SnS<sub><i>x</i></sub>Se<sub>4−<i>x</i></sub> chalcogenides, combining diffraction, spectroscopy, and first-principles simulations. Results show that cubic sphalerite is stabilized by antisite disorder and stacking faults, while thermal activation promotes ordered kesterite motifs with fewer defects. These insights clarify the disorder−stability relationship, guiding the design of sustainable thermoelectric and photovoltaic materials.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 19\",\"pages\":\"8133–8146\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.cgd.5c00935\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00935\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00935","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Cu2+ yZn1-ySnSxSe4-x(0≤x≤4;y = 0,0.125)体系是地球上丰富的无毒硫族化合物,具有可调的多态性和化学无序性,使其成为可持续热电和光伏应用的有希望的候选国。最近通过机械化学合成的方法稳定立方闪锌矿Cu2ZnSnS4和Cu2ZnSnSe4,证明了低能光学声子模式和电荷载流子的拓扑传导途径增强了热电性能。在这项研究中,我们探索了阴离子取代和cu诱导的CuZn反位无序在高温下稳定立方相并驱动其向部分无序的四方kesterite结构转变中的作用。结合x射线衍射、拉曼光谱和第一性原理模拟(DFT、DFPT、AIMD)表明,富cu成分偏离了维加德定律,表现出增加的层错密度,并在四面体基序中表现出明显的畸变。AIMD结果表明,立方相的高对称性使得四面体构型、稳定无序和堆积错误分布广泛。热活化后,熵有利于形成更稳定的S/ Se-Cu3Sn、S/ Se-Cu2ZnSn和S/ Se-CuZn2Sn基序,稳定了kesterite相,减少了显微结构缺陷。值得注意的是,在Cu2+ yZn1-ySnS2Se2附近的高熵合金中,Baur键和角度畸变达到峰值,表明尽管存在高缺陷浓度,但结构仍然坚固。这项工作提供了从原子基序水平对微观结构紊乱的基本理解,为调整Cu2+ yZn1-ySnSxSe4-x kesterite和闪锌矿材料的相稳定性和性能提供了有价值的指导。本研究结合衍射、光谱和第一性原理模拟,探讨了阴离子取代和cu诱导的无序如何影响Cu2+yZn1 - ySnSxSe4 - x硫属化合物的相稳定性。结果表明:立方闪锌矿是由反位序和层错稳定的,而热活化促进有序的闪锌矿基序和较少的缺陷。这些见解阐明了无序与稳定的关系,指导了可持续热电和光伏材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Cubic-to-Tetragonal Phase Transition of Cu2+yZn1–ySnSxSe4–x Solid Solutions

The Cu2+yZn1–ySnSxSe4–x (0 ≤ x ≤ 4; y = 0, 0.125) system is an earth-abundant, nontoxic chalcogenide with tunable polymorphism and chemical disorder, making it a promising candidate for sustainable thermoelectric and photovoltaic applications. Recent stabilization of cubic sphalerite Cu2ZnSnS4 and Cu2ZnSnSe4 via mechanochemical synthesis has demonstrated enhanced thermoelectric performance attributed to low-energy optical phonon modes and topological conduction pathways for charge carriers. In this study, we explore the role of anion substitution and Cu-induced CuZn antisite disorder in stabilizing the cubic phase and driving its transformation to the partially disordered tetragonal kesterite structure at high temperature. A combination of X-ray diffraction, Raman spectroscopy, and first-principles simulations (DFT, DFPT, AIMD) reveals that Cu-rich compositions deviate from Vegard’s law, show increased stacking fault density, and exhibit pronounced distortion in the tetrahedral motifs. AIMD results indicate that the higher symmetry of the cubic phase permits a broad distribution of tetrahedral configurations, stabilizing disorder and stacking faults. Upon thermal activation, entropy favors the emergence of more stable S/Se–Cu3Sn, S/Se–Cu2ZnSn, and S/Se–CuZn2Sn motifs, stabilizing the kesterite phase with a reduced quantity of microstructural defects. Notably, in compositions close to Cu2+yZn1–ySnS2Se2, classified as high-entropy alloys, Baur bond and angle distortions peak, suggesting structural robustness despite high defect concentrations. This work provides a fundamental understanding of microstructural disorder from the atomic motif level, offering valuable guidelines for tuning phase stability and properties in Cu2+yZn1–ySnSxSe4–x kesterite and sphalerite materials.

This study explores how anion substitution and Cu-induced disorder govern phase stability in Cu2+yZn1−ySnSxSe4−x chalcogenides, combining diffraction, spectroscopy, and first-principles simulations. Results show that cubic sphalerite is stabilized by antisite disorder and stacking faults, while thermal activation promotes ordered kesterite motifs with fewer defects. These insights clarify the disorder−stability relationship, guiding the design of sustainable thermoelectric and photovoltaic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信