Ahmed K. Hijazi*, , , Qusai M. Sarayrah, , , Abdelrahman W. Malkawi, , , Hassan Abul-Futouh, , , Ziyad A. Taha, , , Deeb Taher, , , Osama H. Abusara, , , Ahmad Q. Daraosheh, , , Ahmad A. L. Ahmad, , and , Waleed M. Al-Momani,
{"title":"一些4-(苄基氨基)苯甲酸衍生物的改进合成、晶体结构分析、DFT计算、抗癌和抗菌性能","authors":"Ahmed K. Hijazi*, , , Qusai M. Sarayrah, , , Abdelrahman W. Malkawi, , , Hassan Abul-Futouh, , , Ziyad A. Taha, , , Deeb Taher, , , Osama H. Abusara, , , Ahmad Q. Daraosheh, , , Ahmad A. L. Ahmad, , and , Waleed M. Al-Momani, ","doi":"10.1021/acsomega.5c03898","DOIUrl":null,"url":null,"abstract":"<p >A series of 4-(benzylamino)benzoic acid derivatives ArCH<sub>2</sub>NH-4-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>H (<b>1–19</b>) (Ar = C<sub>6</sub>H<sub>5</sub> (<b>1</b>); 4–Cl–C<sub>6</sub>H<sub>4</sub> (<b>2</b>); 4-NMe-C<sub>6</sub>H<sub>4</sub> (<b>3</b>); 4–Br–C<sub>6</sub>H<sub>4</sub> (<b>4</b>); 3-NO<sub>2</sub>–C<sub>6</sub>H<sub>4</sub> (<b>5</b>); 4-NO<sub>2</sub>–C<sub>6</sub>H<sub>4</sub> (<b>6</b>); 2-OMe-C<sub>6</sub>H<sub>4</sub> (<b>7</b>); 3-OMe-C<sub>6</sub>H<sub>4</sub> (<b>8</b>); 4-OMe-C<sub>6</sub>H<sub>4</sub> (<b>9</b>); 2,3-OMe-C<sub>6</sub>H<sub>3</sub> (<b>10</b>); 3,4-OMe-C<sub>6</sub>H<sub>3</sub> (<b>11</b>); 2-OH, 3-OMe-C<sub>6</sub>H<sub>3</sub> (<b>12</b>); 3-OMe, 4-OH-C<sub>6</sub>H<sub>3</sub> (<b>13</b>); 3,5-OMe, 4-OH-C<sub>6</sub>H<sub>4</sub> (<b>14</b>); 2-OH-5–Br–C<sub>6</sub>H<sub>3</sub> (<b>15</b>), 3-OH-C<sub>6</sub>H<sub>4</sub> (<b>16</b>); 4-SMe-C<sub>6</sub>H<sub>4</sub> (<b>17</b>); 2,3-OH-C<sub>6</sub>H<sub>3</sub> (<b>18</b>); 3-CF<sub>3</sub>–C<sub>6</sub>H<sub>4</sub> (<b>19</b>)) were synthesized via reductive amination of <i>p</i>-aminobenzoic acid with substituted benzaldehydes and sodium borohydride. The structures were confirmed by MS, FT-IR, NMR, and E.A., with single-crystal X-ray diffraction elucidating key intermolecular interactions in compounds <b>2</b>, <b>4</b>, <b>7</b>–<b>9</b> and <b>11</b>. Hirshfeld surface analysis and 2D fingerprint plots highlighted noncovalent interactions contributing to crystal packing. DFT calculations (PBE0/def2-TZVP/CPCM) provided optimized geometries, HOMO–LUMO gaps, and electrostatic surface potentials. TD-DFT simulations supported experimental UV–vis spectra. Several derivatives (<b>2</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>, <b>11</b>, <b>13–16</b>) showed moderate antibacterial activity (MIC = 64–128 μg/mL) against different strains of bacteria, while compound <b>18</b> exhibited promising anticancer activity with IC<sub>50</sub> values of 90.69 μM against Non-Small Cell Lung Cancer cell line (A549) and 32.22 μM against Small Cell Lung Cancer cell line (H69).</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 38","pages":"43719–43734"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c03898","citationCount":"0","resultStr":"{\"title\":\"Improved Syntheses, Crystal Structures Analysis, DFT Calculation, Anticancer and Antibacterial Properties of Some 4-(Benzylamino)benzoic Acid Derivatives\",\"authors\":\"Ahmed K. Hijazi*, , , Qusai M. Sarayrah, , , Abdelrahman W. Malkawi, , , Hassan Abul-Futouh, , , Ziyad A. Taha, , , Deeb Taher, , , Osama H. Abusara, , , Ahmad Q. Daraosheh, , , Ahmad A. L. Ahmad, , and , Waleed M. Al-Momani, \",\"doi\":\"10.1021/acsomega.5c03898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A series of 4-(benzylamino)benzoic acid derivatives ArCH<sub>2</sub>NH-4-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>H (<b>1–19</b>) (Ar = C<sub>6</sub>H<sub>5</sub> (<b>1</b>); 4–Cl–C<sub>6</sub>H<sub>4</sub> (<b>2</b>); 4-NMe-C<sub>6</sub>H<sub>4</sub> (<b>3</b>); 4–Br–C<sub>6</sub>H<sub>4</sub> (<b>4</b>); 3-NO<sub>2</sub>–C<sub>6</sub>H<sub>4</sub> (<b>5</b>); 4-NO<sub>2</sub>–C<sub>6</sub>H<sub>4</sub> (<b>6</b>); 2-OMe-C<sub>6</sub>H<sub>4</sub> (<b>7</b>); 3-OMe-C<sub>6</sub>H<sub>4</sub> (<b>8</b>); 4-OMe-C<sub>6</sub>H<sub>4</sub> (<b>9</b>); 2,3-OMe-C<sub>6</sub>H<sub>3</sub> (<b>10</b>); 3,4-OMe-C<sub>6</sub>H<sub>3</sub> (<b>11</b>); 2-OH, 3-OMe-C<sub>6</sub>H<sub>3</sub> (<b>12</b>); 3-OMe, 4-OH-C<sub>6</sub>H<sub>3</sub> (<b>13</b>); 3,5-OMe, 4-OH-C<sub>6</sub>H<sub>4</sub> (<b>14</b>); 2-OH-5–Br–C<sub>6</sub>H<sub>3</sub> (<b>15</b>), 3-OH-C<sub>6</sub>H<sub>4</sub> (<b>16</b>); 4-SMe-C<sub>6</sub>H<sub>4</sub> (<b>17</b>); 2,3-OH-C<sub>6</sub>H<sub>3</sub> (<b>18</b>); 3-CF<sub>3</sub>–C<sub>6</sub>H<sub>4</sub> (<b>19</b>)) were synthesized via reductive amination of <i>p</i>-aminobenzoic acid with substituted benzaldehydes and sodium borohydride. The structures were confirmed by MS, FT-IR, NMR, and E.A., with single-crystal X-ray diffraction elucidating key intermolecular interactions in compounds <b>2</b>, <b>4</b>, <b>7</b>–<b>9</b> and <b>11</b>. Hirshfeld surface analysis and 2D fingerprint plots highlighted noncovalent interactions contributing to crystal packing. DFT calculations (PBE0/def2-TZVP/CPCM) provided optimized geometries, HOMO–LUMO gaps, and electrostatic surface potentials. TD-DFT simulations supported experimental UV–vis spectra. Several derivatives (<b>2</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>, <b>11</b>, <b>13–16</b>) showed moderate antibacterial activity (MIC = 64–128 μg/mL) against different strains of bacteria, while compound <b>18</b> exhibited promising anticancer activity with IC<sub>50</sub> values of 90.69 μM against Non-Small Cell Lung Cancer cell line (A549) and 32.22 μM against Small Cell Lung Cancer cell line (H69).</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 38\",\"pages\":\"43719–43734\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c03898\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c03898\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c03898","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.