1,3-二恶氧烷在重水系统中快速生成氢包合物

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Emmerson Hondo, , , Mingle Xu, , , Gaurav Vishwakarma, , , Ye Zhang*, , and , Praveen Linga*, 
{"title":"1,3-二恶氧烷在重水系统中快速生成氢包合物","authors":"Emmerson Hondo,&nbsp;, ,&nbsp;Mingle Xu,&nbsp;, ,&nbsp;Gaurav Vishwakarma,&nbsp;, ,&nbsp;Ye Zhang*,&nbsp;, and ,&nbsp;Praveen Linga*,&nbsp;","doi":"10.1021/acs.energyfuels.5c03862","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen (H<sub>2</sub>) clathrate hydrates offer a promising platform for safe, dense, and reversible H<sub>2</sub> storage, yet require thermodynamic and kinetic enhancement for practical deployment. This study systematically investigates 1,3-dioxolane (DIOX) as a dual-function promoter for structure II (sII) H<sub>2</sub> hydrates formed in D<sub>2</sub>O. Systematic variation of formation conditions, which includes pressure (9.5–12.5 MPa), temperature (274.65–276.65 K), and DIOX concentration (3.56–6.56 mol %), revealed that 5.56 mol % DIOX at 275.65 K and 12.5 MPa achieved optimal performance, with H<sub>2</sub> uptake reaching 30.49 ± 0.68 v/v (∼0.24 wt %) within 2 h, marking a benchmark for binary hydrate systems under mild conditions. While D<sub>2</sub>O is known to yield slightly more stable hydrates than H<sub>2</sub>O due to stronger O–D bonds, its impact in H<sub>2</sub>-DIOX systems remains largely unexplored. This work bridges that gap by experimentally examining isotopic effects on hydrate phase stability, cage dynamics, and Raman spectral behavior, providing new insights into promoter–solvent interactions and hydrate lattice evolution. Thermodynamic equilibrium boundaries revealed the lowest formation pressure (∼1.1 MPa at 275.5 K) for the optimal formulation. P-XRD confirmed pure sII lattice formation, and <i>in situ</i> Raman spectroscopy validated selective cage occupancy, with DIOX in large 5<sup>12</sup>6<sup>4</sup> cages and H<sub>2</sub> in small 5<sup>12</sup> cages. The findings highlight the ability of DIOX-D<sub>2</sub>O system to reduce formation thresholds and accelerate hydrate kinetics without compromising capacity. Thus, the H<sub>2</sub>-DIOX-D<sub>2</sub>O system exhibits the essential traits for clean and safe H<sub>2</sub> storage under practical conditions, supporting future integration into energy infrastructure.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 39","pages":"18959–18968"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Formation of Hydrogen Clathrates Using 1,3-Dioxolane in Heavy Water Systems\",\"authors\":\"Emmerson Hondo,&nbsp;, ,&nbsp;Mingle Xu,&nbsp;, ,&nbsp;Gaurav Vishwakarma,&nbsp;, ,&nbsp;Ye Zhang*,&nbsp;, and ,&nbsp;Praveen Linga*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c03862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen (H<sub>2</sub>) clathrate hydrates offer a promising platform for safe, dense, and reversible H<sub>2</sub> storage, yet require thermodynamic and kinetic enhancement for practical deployment. This study systematically investigates 1,3-dioxolane (DIOX) as a dual-function promoter for structure II (sII) H<sub>2</sub> hydrates formed in D<sub>2</sub>O. Systematic variation of formation conditions, which includes pressure (9.5–12.5 MPa), temperature (274.65–276.65 K), and DIOX concentration (3.56–6.56 mol %), revealed that 5.56 mol % DIOX at 275.65 K and 12.5 MPa achieved optimal performance, with H<sub>2</sub> uptake reaching 30.49 ± 0.68 v/v (∼0.24 wt %) within 2 h, marking a benchmark for binary hydrate systems under mild conditions. While D<sub>2</sub>O is known to yield slightly more stable hydrates than H<sub>2</sub>O due to stronger O–D bonds, its impact in H<sub>2</sub>-DIOX systems remains largely unexplored. This work bridges that gap by experimentally examining isotopic effects on hydrate phase stability, cage dynamics, and Raman spectral behavior, providing new insights into promoter–solvent interactions and hydrate lattice evolution. Thermodynamic equilibrium boundaries revealed the lowest formation pressure (∼1.1 MPa at 275.5 K) for the optimal formulation. P-XRD confirmed pure sII lattice formation, and <i>in situ</i> Raman spectroscopy validated selective cage occupancy, with DIOX in large 5<sup>12</sup>6<sup>4</sup> cages and H<sub>2</sub> in small 5<sup>12</sup> cages. The findings highlight the ability of DIOX-D<sub>2</sub>O system to reduce formation thresholds and accelerate hydrate kinetics without compromising capacity. Thus, the H<sub>2</sub>-DIOX-D<sub>2</sub>O system exhibits the essential traits for clean and safe H<sub>2</sub> storage under practical conditions, supporting future integration into energy infrastructure.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 39\",\"pages\":\"18959–18968\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03862\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03862","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氢(H2)包合物水合物为安全、致密、可逆的氢气储存提供了一个很有前景的平台,但在实际应用中需要提高热力学和动力学性能。本研究系统地研究了1,3-二恶烷(DIOX)作为D2O中形成的结构II (sII) H2水合物的双功能促进剂。通过对压力(9.5 ~ 12.5 MPa)、温度(274.65 ~ 276.65 K)和DIOX浓度(3.56 ~ 6.56 mol %)等条件的系统研究,发现在275.65 K和12.5 MPa条件下,DIOX浓度为5.56 mol %, H2吸收率在2 h内达到30.49±0.68 v/v (~ 0.24 wt %),为二元水合物体系在温和条件下的形成提供了基准。虽然已知由于O-D键更强,D2O比H2O产生更稳定的水合物,但它对H2-DIOX系统的影响仍未得到充分研究。这项工作通过实验研究同位素对水合物相稳定性、笼形动力学和拉曼光谱行为的影响,填补了这一空白,为促进剂-溶剂相互作用和水合物晶格演化提供了新的见解。热力学平衡边界揭示了最优配方的最低地层压力(275.5 K时约1.1 MPa)。P-XRD证实了纯sII晶格形成,原位拉曼光谱证实了选择性笼内占用,大的51264笼中有DIOX,小的512笼中有H2。研究结果强调了DIOX-D2O体系在不影响产能的情况下降低地层阈值和加速水合物动力学的能力。因此,H2- diox - d2o体系在实际条件下表现出清洁和安全储氢的基本特征,支持未来与能源基础设施的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile Formation of Hydrogen Clathrates Using 1,3-Dioxolane in Heavy Water Systems

Facile Formation of Hydrogen Clathrates Using 1,3-Dioxolane in Heavy Water Systems

Hydrogen (H2) clathrate hydrates offer a promising platform for safe, dense, and reversible H2 storage, yet require thermodynamic and kinetic enhancement for practical deployment. This study systematically investigates 1,3-dioxolane (DIOX) as a dual-function promoter for structure II (sII) H2 hydrates formed in D2O. Systematic variation of formation conditions, which includes pressure (9.5–12.5 MPa), temperature (274.65–276.65 K), and DIOX concentration (3.56–6.56 mol %), revealed that 5.56 mol % DIOX at 275.65 K and 12.5 MPa achieved optimal performance, with H2 uptake reaching 30.49 ± 0.68 v/v (∼0.24 wt %) within 2 h, marking a benchmark for binary hydrate systems under mild conditions. While D2O is known to yield slightly more stable hydrates than H2O due to stronger O–D bonds, its impact in H2-DIOX systems remains largely unexplored. This work bridges that gap by experimentally examining isotopic effects on hydrate phase stability, cage dynamics, and Raman spectral behavior, providing new insights into promoter–solvent interactions and hydrate lattice evolution. Thermodynamic equilibrium boundaries revealed the lowest formation pressure (∼1.1 MPa at 275.5 K) for the optimal formulation. P-XRD confirmed pure sII lattice formation, and in situ Raman spectroscopy validated selective cage occupancy, with DIOX in large 51264 cages and H2 in small 512 cages. The findings highlight the ability of DIOX-D2O system to reduce formation thresholds and accelerate hydrate kinetics without compromising capacity. Thus, the H2-DIOX-D2O system exhibits the essential traits for clean and safe H2 storage under practical conditions, supporting future integration into energy infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信