光电材料中光生电荷载流子的时空成像

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-10-01 DOI:10.1016/j.matt.2025.102423
Lijie Wang , Razan Nughays , Omar F. Mohammed
{"title":"光电材料中光生电荷载流子的时空成像","authors":"Lijie Wang ,&nbsp;Razan Nughays ,&nbsp;Omar F. Mohammed","doi":"10.1016/j.matt.2025.102423","DOIUrl":null,"url":null,"abstract":"<div><div>This review offers a comprehensive examination of spatiotemporal imaging techniques used to investigate photogenerated carrier transport in optoelectronic materials. We highlight recent advancements in experimental methodologies, including ultrafast transient absorption (TA) microscopy, time-resolved photoluminescence (TRPL) microscopy, and scanning ultrafast electron microscopy (SUEM), all of which enable high-resolution tracking of carrier dynamics in both time and space domains. Each method is analyzed regarding its advantages and limitations, underscoring its applicability to various material systems and specific probing scenarios. By focusing on key material systems, such as perovskites and two-dimensional (2D) materials, this review demonstrates how these advanced techniques deepen our understanding of charge carrier transport and recombination mechanisms. Ultimately, we illustrate how these insights can lead to impactful applications that enhance device efficiency and reveal new functionalities. By consolidating our findings, we highlight the crucial role of spatiotemporal investigations in catalyzing innovations in materials engineering and devices within the fields of ultrafast science and optoelectronics.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 10","pages":"Article 102423"},"PeriodicalIF":17.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal imaging of photogenerated charge carriers in optoelectronic materials\",\"authors\":\"Lijie Wang ,&nbsp;Razan Nughays ,&nbsp;Omar F. Mohammed\",\"doi\":\"10.1016/j.matt.2025.102423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review offers a comprehensive examination of spatiotemporal imaging techniques used to investigate photogenerated carrier transport in optoelectronic materials. We highlight recent advancements in experimental methodologies, including ultrafast transient absorption (TA) microscopy, time-resolved photoluminescence (TRPL) microscopy, and scanning ultrafast electron microscopy (SUEM), all of which enable high-resolution tracking of carrier dynamics in both time and space domains. Each method is analyzed regarding its advantages and limitations, underscoring its applicability to various material systems and specific probing scenarios. By focusing on key material systems, such as perovskites and two-dimensional (2D) materials, this review demonstrates how these advanced techniques deepen our understanding of charge carrier transport and recombination mechanisms. Ultimately, we illustrate how these insights can lead to impactful applications that enhance device efficiency and reveal new functionalities. By consolidating our findings, we highlight the crucial role of spatiotemporal investigations in catalyzing innovations in materials engineering and devices within the fields of ultrafast science and optoelectronics.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 10\",\"pages\":\"Article 102423\"},\"PeriodicalIF\":17.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238525004667\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525004667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了用于研究光电材料中光生载流子输运的时空成像技术。我们重点介绍了实验方法的最新进展,包括超快瞬态吸收(TA)显微镜,时间分辨光致发光(TRPL)显微镜和扫描超快电子显微镜(SUEM),所有这些都可以在时间和空间领域对载流子动力学进行高分辨率跟踪。分析了每种方法的优点和局限性,强调了其对各种材料系统和特定探测场景的适用性。通过关注关键材料系统,如钙钛矿和二维(2D)材料,本综述展示了这些先进技术如何加深我们对载流子输运和重组机制的理解。最后,我们将说明这些见解如何导致有影响力的应用程序,从而提高设备效率并揭示新功能。通过巩固我们的发现,我们强调了时空研究在催化超快科学和光电子学领域的材料工程和器件创新方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatiotemporal imaging of photogenerated charge carriers in optoelectronic materials

Spatiotemporal imaging of photogenerated charge carriers in optoelectronic materials

Spatiotemporal imaging of photogenerated charge carriers in optoelectronic materials
This review offers a comprehensive examination of spatiotemporal imaging techniques used to investigate photogenerated carrier transport in optoelectronic materials. We highlight recent advancements in experimental methodologies, including ultrafast transient absorption (TA) microscopy, time-resolved photoluminescence (TRPL) microscopy, and scanning ultrafast electron microscopy (SUEM), all of which enable high-resolution tracking of carrier dynamics in both time and space domains. Each method is analyzed regarding its advantages and limitations, underscoring its applicability to various material systems and specific probing scenarios. By focusing on key material systems, such as perovskites and two-dimensional (2D) materials, this review demonstrates how these advanced techniques deepen our understanding of charge carrier transport and recombination mechanisms. Ultimately, we illustrate how these insights can lead to impactful applications that enhance device efficiency and reveal new functionalities. By consolidating our findings, we highlight the crucial role of spatiotemporal investigations in catalyzing innovations in materials engineering and devices within the fields of ultrafast science and optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信