转录因子的共同选择驱动了对坏死性病原体的定量抗病进化

S Einspanier, C Tominello-Ramirez, F Delplace, R Stam
{"title":"转录因子的共同选择驱动了对坏死性病原体的定量抗病进化","authors":"S Einspanier, C Tominello-Ramirez, F Delplace, R Stam","doi":"10.1093/plcell/koaf233","DOIUrl":null,"url":null,"abstract":"Wild relatives of crop species possess diverse levels of quantitative disease resistance (QDR) to biotic stresses. The genomic and regulatory mechanisms underlying these differences are poorly understood. How QDR against a generalist necrotrophic pathogen evolved and whether it is driven by conserved or species-specific regulatory networks remains unclear. We examined the transcriptomic responses of five diverse wild tomato species that span a gradient of QDR. We initially hypothesized that conserved regulatory modules might control QDR. We use differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to find instead that species-specific regulatory features, encompassing both infection-induced and constitutively expressed genes, predominantly shape QDR levels. To further dissect the evolutionary basis of these regulatory patterns, we performed phylotranscriptomic analyses of gene regulatory networks. Notably, our findings reveal that the conserved NAC transcription factor 29 is pivotal in developing disease resistance only in S. pennellii. The differential regulation and altered downstream signaling pathways of NAC29 provide evidence for its co-option in the resistance mechanisms of S. pennellii. The role of NAC29 in conferring resistance is confirmed by the presence of a premature stop codon in susceptible S. pennellii genotypes. This finding highlights the species-specific rewiring of gene regulatory networks by repurposing a conserved regulatory element to effectively enhance resistance against pathogens. These results offer insights into the evolutionary and regulatory complexity underlying QDR and emphasize the significance of species-specific gene regulation in shaping resistance against a cosmopolitan necrotrophic pathogen.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-option of transcription factors drives evolution of quantitative disease resistance against a necrotrophic pathogen\",\"authors\":\"S Einspanier, C Tominello-Ramirez, F Delplace, R Stam\",\"doi\":\"10.1093/plcell/koaf233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wild relatives of crop species possess diverse levels of quantitative disease resistance (QDR) to biotic stresses. The genomic and regulatory mechanisms underlying these differences are poorly understood. How QDR against a generalist necrotrophic pathogen evolved and whether it is driven by conserved or species-specific regulatory networks remains unclear. We examined the transcriptomic responses of five diverse wild tomato species that span a gradient of QDR. We initially hypothesized that conserved regulatory modules might control QDR. We use differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to find instead that species-specific regulatory features, encompassing both infection-induced and constitutively expressed genes, predominantly shape QDR levels. To further dissect the evolutionary basis of these regulatory patterns, we performed phylotranscriptomic analyses of gene regulatory networks. Notably, our findings reveal that the conserved NAC transcription factor 29 is pivotal in developing disease resistance only in S. pennellii. The differential regulation and altered downstream signaling pathways of NAC29 provide evidence for its co-option in the resistance mechanisms of S. pennellii. The role of NAC29 in conferring resistance is confirmed by the presence of a premature stop codon in susceptible S. pennellii genotypes. This finding highlights the species-specific rewiring of gene regulatory networks by repurposing a conserved regulatory element to effectively enhance resistance against pathogens. These results offer insights into the evolutionary and regulatory complexity underlying QDR and emphasize the significance of species-specific gene regulation in shaping resistance against a cosmopolitan necrotrophic pathogen.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作物野生近缘种对生物胁迫具有不同程度的定量抗病能力。这些差异背后的基因组和调控机制尚不清楚。目前尚不清楚QDR是如何进化的,以及它是由保守的还是物种特异性的调控网络驱动的。我们研究了跨越QDR梯度的五种不同野生番茄物种的转录组反应。我们最初假设保守的调控模块可能控制QDR。我们使用差异基因表达分析和加权基因共表达网络分析(WGCNA)发现,物种特异性调控特征,包括感染诱导和组成表达基因,主要影响QDR水平。为了进一步剖析这些调控模式的进化基础,我们对基因调控网络进行了系统转录组学分析。值得注意的是,我们的研究结果表明,保守的NAC转录因子29仅在pennellii中发挥关键作用。NAC29的差异调控和下游信号通路的改变为其在pennellii耐药机制中的协同作用提供了证据。NAC29在耐药中的作用是通过在pennellii易感基因型中存在一个过早停止密码子来证实的。这一发现强调了物种特异性基因调控网络的重新布线,通过重新利用一个保守的调控元件来有效地增强对病原体的抵抗力。这些结果为QDR的进化和调控复杂性提供了见解,并强调了物种特异性基因调控在形成对世界性坏死性病原体的抗性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-option of transcription factors drives evolution of quantitative disease resistance against a necrotrophic pathogen
Wild relatives of crop species possess diverse levels of quantitative disease resistance (QDR) to biotic stresses. The genomic and regulatory mechanisms underlying these differences are poorly understood. How QDR against a generalist necrotrophic pathogen evolved and whether it is driven by conserved or species-specific regulatory networks remains unclear. We examined the transcriptomic responses of five diverse wild tomato species that span a gradient of QDR. We initially hypothesized that conserved regulatory modules might control QDR. We use differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to find instead that species-specific regulatory features, encompassing both infection-induced and constitutively expressed genes, predominantly shape QDR levels. To further dissect the evolutionary basis of these regulatory patterns, we performed phylotranscriptomic analyses of gene regulatory networks. Notably, our findings reveal that the conserved NAC transcription factor 29 is pivotal in developing disease resistance only in S. pennellii. The differential regulation and altered downstream signaling pathways of NAC29 provide evidence for its co-option in the resistance mechanisms of S. pennellii. The role of NAC29 in conferring resistance is confirmed by the presence of a premature stop codon in susceptible S. pennellii genotypes. This finding highlights the species-specific rewiring of gene regulatory networks by repurposing a conserved regulatory element to effectively enhance resistance against pathogens. These results offer insights into the evolutionary and regulatory complexity underlying QDR and emphasize the significance of species-specific gene regulation in shaping resistance against a cosmopolitan necrotrophic pathogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信