非晶氧化镓光电晶体管在光学传感器神经形态中的应用。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-01 DOI:10.1021/acsnano.5c06760
Yong Zhang, , , Kevin Chang, , , Huilong Yan, , , Chi-Hsin Huang, , and , Kenji Nomura*, 
{"title":"非晶氧化镓光电晶体管在光学传感器神经形态中的应用。","authors":"Yong Zhang,&nbsp;, ,&nbsp;Kevin Chang,&nbsp;, ,&nbsp;Huilong Yan,&nbsp;, ,&nbsp;Chi-Hsin Huang,&nbsp;, and ,&nbsp;Kenji Nomura*,&nbsp;","doi":"10.1021/acsnano.5c06760","DOIUrl":null,"url":null,"abstract":"<p >Optoelectronic neuromorphic devices, which mimic the functionalities of the human eye and brain neural systems, have attracted significant interest for enabling highly energy-efficient computing systems for next-generation artificial intelligence applications. However, several key challenges persist, including a limited dynamic range for light-induced synaptic weights, low optical photogain, lack of spectral selectivity, and incompatibility with heterogeneous integration. Addressing these issues is essential for unlocking the full potential of optosynaptic devices in advanced AI systems. In this work, we develop artificial solar-blind optoelectronic synaptic devices exhibiting high pattern recognition rates (&gt;92%) in neural network training using ultrawide-bandgap amorphous gallium oxide (a-GaO<sub><i>x</i></sub>) thin-film transistors (TFTs). The device functions through deep ultraviolet (DUV) optically induced potentiation and gate-terminal electrical depression processes, exhibiting excellent plasticity and a wide conductance weight update range. This performance is attributed to its superior TFT switching characteristics, strong DUV photoresponse with a dynamic gain exceeding 10<sup>8</sup>, and UV-triggered persistent photoconductivity (PPC) lasting over 1000 s. Moreover, the device can be fabricated at a low temperature of 450 °C, ensuring compatibility with the complementary metal-oxide–semiconductor (CMOS) back-end-of-line (BEOL) process.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 40","pages":"35401–35413"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Solar-Blind Optosynapses Using Amorphous Gallium Oxide Phototransistors for Optical In-Sensor Neuromorphic Applications\",\"authors\":\"Yong Zhang,&nbsp;, ,&nbsp;Kevin Chang,&nbsp;, ,&nbsp;Huilong Yan,&nbsp;, ,&nbsp;Chi-Hsin Huang,&nbsp;, and ,&nbsp;Kenji Nomura*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c06760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optoelectronic neuromorphic devices, which mimic the functionalities of the human eye and brain neural systems, have attracted significant interest for enabling highly energy-efficient computing systems for next-generation artificial intelligence applications. However, several key challenges persist, including a limited dynamic range for light-induced synaptic weights, low optical photogain, lack of spectral selectivity, and incompatibility with heterogeneous integration. Addressing these issues is essential for unlocking the full potential of optosynaptic devices in advanced AI systems. In this work, we develop artificial solar-blind optoelectronic synaptic devices exhibiting high pattern recognition rates (&gt;92%) in neural network training using ultrawide-bandgap amorphous gallium oxide (a-GaO<sub><i>x</i></sub>) thin-film transistors (TFTs). The device functions through deep ultraviolet (DUV) optically induced potentiation and gate-terminal electrical depression processes, exhibiting excellent plasticity and a wide conductance weight update range. This performance is attributed to its superior TFT switching characteristics, strong DUV photoresponse with a dynamic gain exceeding 10<sup>8</sup>, and UV-triggered persistent photoconductivity (PPC) lasting over 1000 s. Moreover, the device can be fabricated at a low temperature of 450 °C, ensuring compatibility with the complementary metal-oxide–semiconductor (CMOS) back-end-of-line (BEOL) process.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 40\",\"pages\":\"35401–35413\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06760\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06760","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光电神经形态器件模仿人眼和脑神经系统的功能,为下一代人工智能应用提供高能效计算系统,引起了人们的极大兴趣。然而,一些关键的挑战仍然存在,包括光诱导突触重量的有限动态范围,低光学光增益,缺乏光谱选择性以及与异质集成不兼容。解决这些问题对于释放先进人工智能系统中光突触设备的全部潜力至关重要。在这项工作中,我们利用超宽带隙非晶态氧化镓(a-GaOx)薄膜晶体管(TFTs)开发了人工太阳盲光电突触装置,在神经网络训练中具有高模式识别率(>92%)。该器件通过深紫外(DUV)光诱导增强和栅极端电抑制过程发挥作用,具有优异的可塑性和宽的电导重量更新范围。这一性能归功于其优越的TFT开关特性,强大的DUV光响应,动态增益超过108,以及持续超过1000秒的uv触发持续光电导率(PPC)。此外,该器件可以在450°C的低温下制造,确保与互补金属氧化物半导体(CMOS)后端线(BEOL)工艺的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Solar-Blind Optosynapses Using Amorphous Gallium Oxide Phototransistors for Optical In-Sensor Neuromorphic Applications

Artificial Solar-Blind Optosynapses Using Amorphous Gallium Oxide Phototransistors for Optical In-Sensor Neuromorphic Applications

Optoelectronic neuromorphic devices, which mimic the functionalities of the human eye and brain neural systems, have attracted significant interest for enabling highly energy-efficient computing systems for next-generation artificial intelligence applications. However, several key challenges persist, including a limited dynamic range for light-induced synaptic weights, low optical photogain, lack of spectral selectivity, and incompatibility with heterogeneous integration. Addressing these issues is essential for unlocking the full potential of optosynaptic devices in advanced AI systems. In this work, we develop artificial solar-blind optoelectronic synaptic devices exhibiting high pattern recognition rates (>92%) in neural network training using ultrawide-bandgap amorphous gallium oxide (a-GaOx) thin-film transistors (TFTs). The device functions through deep ultraviolet (DUV) optically induced potentiation and gate-terminal electrical depression processes, exhibiting excellent plasticity and a wide conductance weight update range. This performance is attributed to its superior TFT switching characteristics, strong DUV photoresponse with a dynamic gain exceeding 108, and UV-triggered persistent photoconductivity (PPC) lasting over 1000 s. Moreover, the device can be fabricated at a low temperature of 450 °C, ensuring compatibility with the complementary metal-oxide–semiconductor (CMOS) back-end-of-line (BEOL) process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信