S. R. Kamaletdinov, A. V. Artemyev, V. Angelopoulos
{"title":"日侧磁层顶附近的高能电子增强:由于不对称漂移-轨道分岔导致的向外径向输运","authors":"S. R. Kamaletdinov, A. V. Artemyev, V. Angelopoulos","doi":"10.1029/2025gl116514","DOIUrl":null,"url":null,"abstract":"The magnetopause boundary layer often exhibits flux enhancements in keV electrons. Intriguingly, these enhancements frequently occur in the afternoon sector, which is typically magnetopause‐shadowed. They are usually attributed to local production by dayside reconnection, wave‐particle interactions, or radial diffusion by ultra‐low frequency waves. However, under standard magnetospheric conditions, these mechanisms fail to explain the rapid appearance of the electron fluxes and acceleration from magnetosheath energies (tens of eV) to tens of keV. Using data from the THEMIS mission, we report an energetic electron enhancement forming on hour timescales. A test‐particle simulation shows it can result from rapid, non‐diffusive radial transport driven by asymmetric drift‐orbit bifurcation. While this does not exclude alternative interpretations involving radial diffusion, the finding underscores the role of drift‐orbit bifurcation in controlling energetic electron dynamics near the magnetopause, which should be considered alongside conventional mechanisms.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"31 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetic Electron Enhancements Near the Dayside Magnetopause: Outward Radial Transport Due To Asymmetric Drift‐Orbit Bifurcation\",\"authors\":\"S. R. Kamaletdinov, A. V. Artemyev, V. Angelopoulos\",\"doi\":\"10.1029/2025gl116514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetopause boundary layer often exhibits flux enhancements in keV electrons. Intriguingly, these enhancements frequently occur in the afternoon sector, which is typically magnetopause‐shadowed. They are usually attributed to local production by dayside reconnection, wave‐particle interactions, or radial diffusion by ultra‐low frequency waves. However, under standard magnetospheric conditions, these mechanisms fail to explain the rapid appearance of the electron fluxes and acceleration from magnetosheath energies (tens of eV) to tens of keV. Using data from the THEMIS mission, we report an energetic electron enhancement forming on hour timescales. A test‐particle simulation shows it can result from rapid, non‐diffusive radial transport driven by asymmetric drift‐orbit bifurcation. While this does not exclude alternative interpretations involving radial diffusion, the finding underscores the role of drift‐orbit bifurcation in controlling energetic electron dynamics near the magnetopause, which should be considered alongside conventional mechanisms.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2025gl116514\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2025gl116514","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Energetic Electron Enhancements Near the Dayside Magnetopause: Outward Radial Transport Due To Asymmetric Drift‐Orbit Bifurcation
The magnetopause boundary layer often exhibits flux enhancements in keV electrons. Intriguingly, these enhancements frequently occur in the afternoon sector, which is typically magnetopause‐shadowed. They are usually attributed to local production by dayside reconnection, wave‐particle interactions, or radial diffusion by ultra‐low frequency waves. However, under standard magnetospheric conditions, these mechanisms fail to explain the rapid appearance of the electron fluxes and acceleration from magnetosheath energies (tens of eV) to tens of keV. Using data from the THEMIS mission, we report an energetic electron enhancement forming on hour timescales. A test‐particle simulation shows it can result from rapid, non‐diffusive radial transport driven by asymmetric drift‐orbit bifurcation. While this does not exclude alternative interpretations involving radial diffusion, the finding underscores the role of drift‐orbit bifurcation in controlling energetic electron dynamics near the magnetopause, which should be considered alongside conventional mechanisms.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.