Miaoyuan Hua,Wenzhe Yin,Alison C Tidy,José Fernández Gómez,Huanjun Li,Shuya Shi,Guangwei Xing,Jie Zong,Zoe A Wilson
{"title":"bHLH转录因子DTT1是解锁大麦花药发育中绒毡层转变的配对关键的一部分。","authors":"Miaoyuan Hua,Wenzhe Yin,Alison C Tidy,José Fernández Gómez,Huanjun Li,Shuya Shi,Guangwei Xing,Jie Zong,Zoe A Wilson","doi":"10.1093/plcell/koaf230","DOIUrl":null,"url":null,"abstract":"The production of viable pollen is essential for effective fertilization and optimal crop yields; however, our understanding of the underlying mechanisms remains limited. Here, we characterize a barley (Hordeum vulgare) anther bHLH gene, DEFECTIVE TAPETUM TRANSITION1 (DTT1), a gatekeeper that regulates tapetum development. The dtt1 mutant is male sterile, failing to acquire tapetum cell fate identity with over-proliferation of indeterminate tapetal precursor cells, a lack of tapetum endomitosis, and cell wall degeneration. DTT1 forms heterodimers with DYSFUNCTIONAL TAPETUM1 (HvDYT1) through bHLH and ACT-like(BIF) domains, with the ACT-like(BIF) domain and the IKL motif critical in partner selection. These heterodimers may subsequently interact with each other through the bHLH-ACT-like(BIF) domain to activate expression. Transcriptome analysis confirmed that anther development transition from stage 6 to 7 fails in dtt1. We show that HvTDF1-related pathways are downstream of DTT1 and work in independent and overlapping networks with other conserved tapetum regulators. SELEX-seq analysis indicates that DTT1 can bind to DNA with a chimeric or canonical E-box motif only when it forms a complex with HvDYT1. In vivo dual-luciferase assays confirmed that the DTT1-HvDYT1 complex directly regulates the expression of several stage 7-specific transcription factors, such as HvTDF1, HvEAT1, and the identified GAMYB target genes. Therefore, the paired DTT1-HvDYT1 complex appears crucial in orchestrating the transition of tapetum cell fate by modulating genes involved in diverse biological pathways. This work uncovers detailed relationships in barley tapetum regulation and male fertility.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The bHLH transcription factor DTT1 is part of a paired key that unlocks the tapetum transition in barley anther development.\",\"authors\":\"Miaoyuan Hua,Wenzhe Yin,Alison C Tidy,José Fernández Gómez,Huanjun Li,Shuya Shi,Guangwei Xing,Jie Zong,Zoe A Wilson\",\"doi\":\"10.1093/plcell/koaf230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The production of viable pollen is essential for effective fertilization and optimal crop yields; however, our understanding of the underlying mechanisms remains limited. Here, we characterize a barley (Hordeum vulgare) anther bHLH gene, DEFECTIVE TAPETUM TRANSITION1 (DTT1), a gatekeeper that regulates tapetum development. The dtt1 mutant is male sterile, failing to acquire tapetum cell fate identity with over-proliferation of indeterminate tapetal precursor cells, a lack of tapetum endomitosis, and cell wall degeneration. DTT1 forms heterodimers with DYSFUNCTIONAL TAPETUM1 (HvDYT1) through bHLH and ACT-like(BIF) domains, with the ACT-like(BIF) domain and the IKL motif critical in partner selection. These heterodimers may subsequently interact with each other through the bHLH-ACT-like(BIF) domain to activate expression. Transcriptome analysis confirmed that anther development transition from stage 6 to 7 fails in dtt1. We show that HvTDF1-related pathways are downstream of DTT1 and work in independent and overlapping networks with other conserved tapetum regulators. SELEX-seq analysis indicates that DTT1 can bind to DNA with a chimeric or canonical E-box motif only when it forms a complex with HvDYT1. In vivo dual-luciferase assays confirmed that the DTT1-HvDYT1 complex directly regulates the expression of several stage 7-specific transcription factors, such as HvTDF1, HvEAT1, and the identified GAMYB target genes. Therefore, the paired DTT1-HvDYT1 complex appears crucial in orchestrating the transition of tapetum cell fate by modulating genes involved in diverse biological pathways. This work uncovers detailed relationships in barley tapetum regulation and male fertility.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The bHLH transcription factor DTT1 is part of a paired key that unlocks the tapetum transition in barley anther development.
The production of viable pollen is essential for effective fertilization and optimal crop yields; however, our understanding of the underlying mechanisms remains limited. Here, we characterize a barley (Hordeum vulgare) anther bHLH gene, DEFECTIVE TAPETUM TRANSITION1 (DTT1), a gatekeeper that regulates tapetum development. The dtt1 mutant is male sterile, failing to acquire tapetum cell fate identity with over-proliferation of indeterminate tapetal precursor cells, a lack of tapetum endomitosis, and cell wall degeneration. DTT1 forms heterodimers with DYSFUNCTIONAL TAPETUM1 (HvDYT1) through bHLH and ACT-like(BIF) domains, with the ACT-like(BIF) domain and the IKL motif critical in partner selection. These heterodimers may subsequently interact with each other through the bHLH-ACT-like(BIF) domain to activate expression. Transcriptome analysis confirmed that anther development transition from stage 6 to 7 fails in dtt1. We show that HvTDF1-related pathways are downstream of DTT1 and work in independent and overlapping networks with other conserved tapetum regulators. SELEX-seq analysis indicates that DTT1 can bind to DNA with a chimeric or canonical E-box motif only when it forms a complex with HvDYT1. In vivo dual-luciferase assays confirmed that the DTT1-HvDYT1 complex directly regulates the expression of several stage 7-specific transcription factors, such as HvTDF1, HvEAT1, and the identified GAMYB target genes. Therefore, the paired DTT1-HvDYT1 complex appears crucial in orchestrating the transition of tapetum cell fate by modulating genes involved in diverse biological pathways. This work uncovers detailed relationships in barley tapetum regulation and male fertility.