超稳定无阳极钠电池用铝集流器刚柔双导电界面的制备。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-09-30 DOI:10.1002/smll.202508205
Lei Peng,Xinyi Huang,Qianyu Zeng,Liangjin Wei,Zhenzhen Liu,Xiaoyan Lv,Jing Su,Yanxuan Wen
{"title":"超稳定无阳极钠电池用铝集流器刚柔双导电界面的制备。","authors":"Lei Peng,Xinyi Huang,Qianyu Zeng,Liangjin Wei,Zhenzhen Liu,Xiaoyan Lv,Jing Su,Yanxuan Wen","doi":"10.1002/smll.202508205","DOIUrl":null,"url":null,"abstract":"Anode-free sodium batteries (AFSBs) guarantee enhanced energy density and safety; however, their practical applications are hindered by uncontrolled dendritic growth and fragile solid electrolyte interphase formation. Hence, a novel interface engineering strategy is adopted in the present work to construct an in situ 3D porous interphase with dual ion/electron conductive channels on aluminum (Al) foil. The interphase consisting of a fast ion-conducting sodium aluminate (NaAlO2)framework, a highly conductive carbon nanotube network, and a flexible carboxymethyl cellulose binder is fabricated through a simple in situ chemical etching method. The unique architecture of the as-prepared interface synergistically regulates the sodiophilic nature and the ion/electron flux distribution, dramatically reducing the sodium nucleation overpotential from 35 mV for bare Al to 15 mV, and enabling ultra-stable sodium plating/stripping in the half cells for over 6000 h at 1 mA cm-2 with a low polarization of 30 mV. When the resultant anode-free full cell is paired with a sodium vanadium phosphate (Na3V2(PO4)3) cathode, it yields impressive high-rate cyclic stability with a retention capacity of 90.7% after 100 cycles at 1 C and a remarkable energy density of 314 Wh kg-1. This work presents a scalable and effective method for stabilizing anode-free configurations and offers valuable insights for next-generation metal-based battery fabrication.","PeriodicalId":228,"journal":{"name":"Small","volume":"54 1","pages":"e08205"},"PeriodicalIF":12.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a Rigid-Flexible and Dual-Conductive Interphase on an Aluminum Current Collector for Ultra-Stable Anode-Free Sodium Batteries.\",\"authors\":\"Lei Peng,Xinyi Huang,Qianyu Zeng,Liangjin Wei,Zhenzhen Liu,Xiaoyan Lv,Jing Su,Yanxuan Wen\",\"doi\":\"10.1002/smll.202508205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anode-free sodium batteries (AFSBs) guarantee enhanced energy density and safety; however, their practical applications are hindered by uncontrolled dendritic growth and fragile solid electrolyte interphase formation. Hence, a novel interface engineering strategy is adopted in the present work to construct an in situ 3D porous interphase with dual ion/electron conductive channels on aluminum (Al) foil. The interphase consisting of a fast ion-conducting sodium aluminate (NaAlO2)framework, a highly conductive carbon nanotube network, and a flexible carboxymethyl cellulose binder is fabricated through a simple in situ chemical etching method. The unique architecture of the as-prepared interface synergistically regulates the sodiophilic nature and the ion/electron flux distribution, dramatically reducing the sodium nucleation overpotential from 35 mV for bare Al to 15 mV, and enabling ultra-stable sodium plating/stripping in the half cells for over 6000 h at 1 mA cm-2 with a low polarization of 30 mV. When the resultant anode-free full cell is paired with a sodium vanadium phosphate (Na3V2(PO4)3) cathode, it yields impressive high-rate cyclic stability with a retention capacity of 90.7% after 100 cycles at 1 C and a remarkable energy density of 314 Wh kg-1. This work presents a scalable and effective method for stabilizing anode-free configurations and offers valuable insights for next-generation metal-based battery fabrication.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"54 1\",\"pages\":\"e08205\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202508205\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无阳极钠电池(AFSBs)保证了更高的能量密度和安全性;然而,它们的实际应用受到不受控制的枝晶生长和脆弱的固体电解质间相形成的阻碍。因此,本文采用一种新的界面工程策略,在铝箔上构建具有双离子/电子导电通道的原位三维多孔界面。通过简单的原位化学蚀刻方法制备了由快速离子导电铝酸钠(NaAlO2)框架、高导电性碳纳米管网络和柔性羧甲基纤维素粘合剂组成的界面相。制备界面的独特结构协同调节了钠的亲钠性和离子/电子通量分布,将裸Al的钠成核过电位从35 mV显著降低到15 mV,并实现了在半电池中以1 mA cm-2和30 mV的低极化在6000小时以上的超稳定镀钠/剥离。当所得到的无阳极全电池与磷酸钒钠(Na3V2(PO4)3)阴极配对时,在1℃下循环100次后,其保持容量为90.7%,能量密度为314 Wh kg-1,具有令人印象印象的高速率循环稳定性。这项工作提出了一种可扩展且有效的稳定无阳极结构的方法,并为下一代金属基电池的制造提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a Rigid-Flexible and Dual-Conductive Interphase on an Aluminum Current Collector for Ultra-Stable Anode-Free Sodium Batteries.
Anode-free sodium batteries (AFSBs) guarantee enhanced energy density and safety; however, their practical applications are hindered by uncontrolled dendritic growth and fragile solid electrolyte interphase formation. Hence, a novel interface engineering strategy is adopted in the present work to construct an in situ 3D porous interphase with dual ion/electron conductive channels on aluminum (Al) foil. The interphase consisting of a fast ion-conducting sodium aluminate (NaAlO2)framework, a highly conductive carbon nanotube network, and a flexible carboxymethyl cellulose binder is fabricated through a simple in situ chemical etching method. The unique architecture of the as-prepared interface synergistically regulates the sodiophilic nature and the ion/electron flux distribution, dramatically reducing the sodium nucleation overpotential from 35 mV for bare Al to 15 mV, and enabling ultra-stable sodium plating/stripping in the half cells for over 6000 h at 1 mA cm-2 with a low polarization of 30 mV. When the resultant anode-free full cell is paired with a sodium vanadium phosphate (Na3V2(PO4)3) cathode, it yields impressive high-rate cyclic stability with a retention capacity of 90.7% after 100 cycles at 1 C and a remarkable energy density of 314 Wh kg-1. This work presents a scalable and effective method for stabilizing anode-free configurations and offers valuable insights for next-generation metal-based battery fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信