{"title":"神经形态视觉系统中具有数千个电导状态的超线性ga2o3级联异质结光电突触。","authors":"Peng Li,Xuanyu Shan,Ya Lin,Yi Du,Jiangang Ma,Zhongqiang Wang,Xiaoning Zhao,Ye Tao,Haiyang Xu,Yichun Liu","doi":"10.1038/s41377-025-01897-9","DOIUrl":null,"url":null,"abstract":"Ultrawide bandgap semiconductor optoelectronic synapses can perform high-parallel computing with a low false alarm rate, making them ideal for building deep-ultraviolet (DUV) neuromorphic visual system (NVS). However, the rapid carrier recombination in these optoelectronic synapses results in a poor number of conductance states and a low linear weight update protocol, consequently degrading the image recognition accuracy of DUV NVSs. This work proposes a type of cascade heterojunctions capable of finely tuning the dynamics of photogenerated carriers, utilizing aluminum interdigital electrodes sandwiched between tin-doped Ga2O3 and oxygen-deficient hafnium oxide (GTO/Al/HfOx) films. The built-in fields at the GTO/HfOx heterojunction and the Al/HfOx hole Schottky junction interfaces facilitate the separation of photogenerated carriers and the subsequent trapping of holes by the oxygen defects in the HfOx, respectively. The GTO/Al/HfOx optoelectronic synapses exhibit an ultrahigh responsivity of over 104 A/W and a large photo-to-dark current ratio of 6 × 105, which results in exceptional synaptic plasticity with unprecedented 4096 conductance states and excellent linearity with a fitting coefficient of 0.992. These attributes enable the GTO/Al/HfOx optoelectronic synapses to execute logical operations with fault-tolerance capability and to achieve high-accuracy fingerprint classification. The innovative cascade heterojunctions design, along with the elucidated carrier dynamics modulation mechanism, facilitates the development of DUV NVSs.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"99 1","pages":"354"},"PeriodicalIF":23.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-highly linear Ga2O3-based cascade heterojunctions optoelectronic synapse with thousands of conductance states for neuromorphic visual system.\",\"authors\":\"Peng Li,Xuanyu Shan,Ya Lin,Yi Du,Jiangang Ma,Zhongqiang Wang,Xiaoning Zhao,Ye Tao,Haiyang Xu,Yichun Liu\",\"doi\":\"10.1038/s41377-025-01897-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrawide bandgap semiconductor optoelectronic synapses can perform high-parallel computing with a low false alarm rate, making them ideal for building deep-ultraviolet (DUV) neuromorphic visual system (NVS). However, the rapid carrier recombination in these optoelectronic synapses results in a poor number of conductance states and a low linear weight update protocol, consequently degrading the image recognition accuracy of DUV NVSs. This work proposes a type of cascade heterojunctions capable of finely tuning the dynamics of photogenerated carriers, utilizing aluminum interdigital electrodes sandwiched between tin-doped Ga2O3 and oxygen-deficient hafnium oxide (GTO/Al/HfOx) films. The built-in fields at the GTO/HfOx heterojunction and the Al/HfOx hole Schottky junction interfaces facilitate the separation of photogenerated carriers and the subsequent trapping of holes by the oxygen defects in the HfOx, respectively. The GTO/Al/HfOx optoelectronic synapses exhibit an ultrahigh responsivity of over 104 A/W and a large photo-to-dark current ratio of 6 × 105, which results in exceptional synaptic plasticity with unprecedented 4096 conductance states and excellent linearity with a fitting coefficient of 0.992. These attributes enable the GTO/Al/HfOx optoelectronic synapses to execute logical operations with fault-tolerance capability and to achieve high-accuracy fingerprint classification. The innovative cascade heterojunctions design, along with the elucidated carrier dynamics modulation mechanism, facilitates the development of DUV NVSs.\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"99 1\",\"pages\":\"354\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01897-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01897-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Ultra-highly linear Ga2O3-based cascade heterojunctions optoelectronic synapse with thousands of conductance states for neuromorphic visual system.
Ultrawide bandgap semiconductor optoelectronic synapses can perform high-parallel computing with a low false alarm rate, making them ideal for building deep-ultraviolet (DUV) neuromorphic visual system (NVS). However, the rapid carrier recombination in these optoelectronic synapses results in a poor number of conductance states and a low linear weight update protocol, consequently degrading the image recognition accuracy of DUV NVSs. This work proposes a type of cascade heterojunctions capable of finely tuning the dynamics of photogenerated carriers, utilizing aluminum interdigital electrodes sandwiched between tin-doped Ga2O3 and oxygen-deficient hafnium oxide (GTO/Al/HfOx) films. The built-in fields at the GTO/HfOx heterojunction and the Al/HfOx hole Schottky junction interfaces facilitate the separation of photogenerated carriers and the subsequent trapping of holes by the oxygen defects in the HfOx, respectively. The GTO/Al/HfOx optoelectronic synapses exhibit an ultrahigh responsivity of over 104 A/W and a large photo-to-dark current ratio of 6 × 105, which results in exceptional synaptic plasticity with unprecedented 4096 conductance states and excellent linearity with a fitting coefficient of 0.992. These attributes enable the GTO/Al/HfOx optoelectronic synapses to execute logical operations with fault-tolerance capability and to achieve high-accuracy fingerprint classification. The innovative cascade heterojunctions design, along with the elucidated carrier dynamics modulation mechanism, facilitates the development of DUV NVSs.