镧系化合物介导的CaS纳米晶体浅到深阱工程多刺激动态防伪。

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Huilin Liu,Xiangran Kong,Jun Zeng,Zezhi Fu,Zhaojie Sun,Xiaoyong Huang,Yunfei Shang,Tong Chen,Hsu-Sheng Tsai,Shuwei Hao,Chunhui Yang
{"title":"镧系化合物介导的CaS纳米晶体浅到深阱工程多刺激动态防伪。","authors":"Huilin Liu,Xiangran Kong,Jun Zeng,Zezhi Fu,Zhaojie Sun,Xiaoyong Huang,Yunfei Shang,Tong Chen,Hsu-Sheng Tsai,Shuwei Hao,Chunhui Yang","doi":"10.1021/acs.inorgchem.5c03282","DOIUrl":null,"url":null,"abstract":"Persistent luminescent (PersL) materials have demonstrated significant potential in multistimulus-responsive anticounterfeiting by tunable trap depths, yet existing material architectures encounter substantial limitations in achieving programmable gradient engineering of defect depths. Herein, we investigate the trap depth evolution mechanism in the CaS systems by employing a lanthanide-ion codoping strategy in calcium sulfide nanocrystals, achieving a gradient-controlled trap depth modulation from 0.644 to 1.090 eV through Sm3+-mediated defect engineering. Thermoluminescence analysis (TL) combined with density functional theory (DFT) calculations reveals that the intrinsic sulfur vacancies act as shallow traps, enabling a persistent luminescence exceeding 600 s. Furthermore, the synergistic interactions between Sm3+ dopants and sulfur vacancies drive the modulation of trap depth, achieving the restructuring of defect states through the controllable doping concentration. This strategy demonstrates remarkable photostimulated luminescence (PSL) performance corresponding to deep trap states (980 nm excitation, 1 W/cm2, 3800 s). The developed core-shell architecture integrates multiresponsive capabilities: the core (CaS:Eu, Sm) preserves an optimized trap hierarchy, while the spatially selective shell (CaS:Er) doping introduces Er3+-mediated green upconversion luminescence (UCL). This work provides a paradigm for programmable stimulus-responsive luminescent materials, significantly advancing dynamic anticounterfeiting technologies with on-demand optical response capabilities.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"23 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lanthanide-Mediated Shallow-to-Deep Trap Engineering in CaS Nanocrystals for Multistimulus Dynamic Anticounterfeiting.\",\"authors\":\"Huilin Liu,Xiangran Kong,Jun Zeng,Zezhi Fu,Zhaojie Sun,Xiaoyong Huang,Yunfei Shang,Tong Chen,Hsu-Sheng Tsai,Shuwei Hao,Chunhui Yang\",\"doi\":\"10.1021/acs.inorgchem.5c03282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent luminescent (PersL) materials have demonstrated significant potential in multistimulus-responsive anticounterfeiting by tunable trap depths, yet existing material architectures encounter substantial limitations in achieving programmable gradient engineering of defect depths. Herein, we investigate the trap depth evolution mechanism in the CaS systems by employing a lanthanide-ion codoping strategy in calcium sulfide nanocrystals, achieving a gradient-controlled trap depth modulation from 0.644 to 1.090 eV through Sm3+-mediated defect engineering. Thermoluminescence analysis (TL) combined with density functional theory (DFT) calculations reveals that the intrinsic sulfur vacancies act as shallow traps, enabling a persistent luminescence exceeding 600 s. Furthermore, the synergistic interactions between Sm3+ dopants and sulfur vacancies drive the modulation of trap depth, achieving the restructuring of defect states through the controllable doping concentration. This strategy demonstrates remarkable photostimulated luminescence (PSL) performance corresponding to deep trap states (980 nm excitation, 1 W/cm2, 3800 s). The developed core-shell architecture integrates multiresponsive capabilities: the core (CaS:Eu, Sm) preserves an optimized trap hierarchy, while the spatially selective shell (CaS:Er) doping introduces Er3+-mediated green upconversion luminescence (UCL). This work provides a paradigm for programmable stimulus-responsive luminescent materials, significantly advancing dynamic anticounterfeiting technologies with on-demand optical response capabilities.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c03282\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c03282","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

持续发光(PersL)材料通过可调陷阱深度在多刺激响应防伪方面显示出巨大的潜力,但现有的材料体系结构在实现缺陷深度的可编程梯度工程方面遇到了很大的限制。本文通过在硫化钙纳米晶体中采用镧系离子共掺杂策略,研究了CaS体系中陷阱深度的演化机制,通过Sm3+介导的缺陷工程,实现了从0.644 eV到1.090 eV的梯度控制陷阱深度调制。热释光分析(TL)结合密度泛函理论(DFT)计算表明,本构硫空位作为浅阱,使持续发光超过600 s。此外,Sm3+掺杂剂与硫空位之间的协同作用驱动陷阱深度的调制,通过可控掺杂浓度实现缺陷态的重组。该策略在深阱态(980 nm激发,1 W/cm2, 3800 s)下具有显著的光激发发光性能。开发的核壳结构集成了多响应能力:核(CaS:Eu, Sm)保留了优化的陷阱层次结构,而空间选择性壳(CaS:Er)掺杂引入了Er3+介导的绿色上转换发光(UCL)。这项工作为可编程刺激响应发光材料提供了一个范例,显著推进了具有按需光学响应能力的动态防伪技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lanthanide-Mediated Shallow-to-Deep Trap Engineering in CaS Nanocrystals for Multistimulus Dynamic Anticounterfeiting.
Persistent luminescent (PersL) materials have demonstrated significant potential in multistimulus-responsive anticounterfeiting by tunable trap depths, yet existing material architectures encounter substantial limitations in achieving programmable gradient engineering of defect depths. Herein, we investigate the trap depth evolution mechanism in the CaS systems by employing a lanthanide-ion codoping strategy in calcium sulfide nanocrystals, achieving a gradient-controlled trap depth modulation from 0.644 to 1.090 eV through Sm3+-mediated defect engineering. Thermoluminescence analysis (TL) combined with density functional theory (DFT) calculations reveals that the intrinsic sulfur vacancies act as shallow traps, enabling a persistent luminescence exceeding 600 s. Furthermore, the synergistic interactions between Sm3+ dopants and sulfur vacancies drive the modulation of trap depth, achieving the restructuring of defect states through the controllable doping concentration. This strategy demonstrates remarkable photostimulated luminescence (PSL) performance corresponding to deep trap states (980 nm excitation, 1 W/cm2, 3800 s). The developed core-shell architecture integrates multiresponsive capabilities: the core (CaS:Eu, Sm) preserves an optimized trap hierarchy, while the spatially selective shell (CaS:Er) doping introduces Er3+-mediated green upconversion luminescence (UCL). This work provides a paradigm for programmable stimulus-responsive luminescent materials, significantly advancing dynamic anticounterfeiting technologies with on-demand optical response capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信